Advertisement

Pharmaceutical Chemistry Journal

, Volume 51, Issue 7, pp 616–621 | Cite as

Efficacy of an Intravenous Form of Rifapentine in a Model of Experimental Tuberculosis in Mice

  • K. P. Ostrovskii
  • N. S. Osipova
  • L. V. Vanchugova
  • E. V. Shipulo
  • V. D. Potapov
  • É. R. Pereverzeva
  • I. D. Treshchalin
  • O. O. Maksimenko
  • S. É. Gel’perina
Article

Solubilization of rifapentine with human serum albumin (HSA) was used to produce a water-miscible form consisting of a colloidal suspension of particles of size 538 ± 9 nm. Dilution of the suspension more than 20-fold led to dissociation of the aggregates formed during solubilization procedure, producing a transparent solution. This was associated with a reduction in particle size to 10 – 20 nm, corresponding to the particle size in HSA solution at the same concentration. A fluorescence method showed that suspensions contained both free rifapentine and its complex with HSA. Studies of the activity against the pathogen of tuberculosis, Mycobacterium tuberculosis H37Rv, in a model of acute infection in Balb/c mice showed that the water-miscible form of rifapentine given intravenously had high activity against mycobacteria, comparable with the activity of rifapentine substance, decreasing mycobacterial loadings in the parenchymatous organs from 106 – 107 to 102 – 103 cfu/organ. Thus, use of HSA as solubilizer yielded an intravenous form of rifapentine retaining the activity of the antibiotic against Mycobacterium tuberculosis.

Keywords

human serum albumin rifamycins rifapentine tuberculosis 

References

  1. 1.
    W. Wehrli and M. Staehelin, Bacteriol. Rev., 35(3), 290 – 309 (1971).PubMedPubMedCentralGoogle Scholar
  2. 2.
    Rifapentine – a new edge to tuberculosis therapy, Latest Reviews, 1(3), URL: http://www.pharmainfo.net/latest-reviews (2005).
  3. 3.
    W. J. Burman, K. Gallicano, and C. Peloquin, Clin. Pharmacokinet., 40(5), 327 – 341 (2001).CrossRefPubMedGoogle Scholar
  4. 4.
    Rifapentine, DrugBank Electronic Database, URL: http://www.drugbank.ca/drugs/DB01201.
  5. 5.
    Rifapentine (Priftin), Selleckchem Electronic Catalog, URL: http://www.selleckchem.com/products/Rifapentine-(Priftin).html.
  6. 6.
    S. Glants, Medical and Biological Statistics [Russian translation], Yu. A. Danilova, Praktika, Moscow (1999), pp. 81 – 122, 323 – 365.Google Scholar
  7. 7.
    Luminescence Kinetics. A Training Manual [in Russian], N. M. Émanuél’ and M. G. Kuz’min (eds.), Moscow State University Press, Moscow (1985), pp. 184 – 187.Google Scholar
  8. 8.
    M. R. Eftink and C. A. Ghiron, Anal. Biochem., 114(2), 199 – 227 (1981).CrossRefPubMedGoogle Scholar
  9. 9.
    Guidelines on Laboratory Animals and Alternative Models in Biomedical Technologies [in Russian], N. N. Karkishchenko and S. V. Gracheva (eds.), Moscow (2010), pp. 26 – 30, 123 – 159, 161 – 181, 191 – 223, 268 – 289, 318 – 336.Google Scholar
  10. 10.
    F. Kratz, J. Control. Rel., 132, 171 – 183 (2008).CrossRefGoogle Scholar
  11. 11.
    E. Bouyer, G. Mekhloufi, and V. Rosilio, et al., Int. J. Pharm., 436(1–2), 359–378 (2012).CrossRefPubMedGoogle Scholar
  12. 12.
    Y. J. Wang and M. A. Hanson, Parenteral Formulations of Proteins and Peptides: Stability and Stabilizers, Parenteral Drug Association (1988), pp. S9-S12.Google Scholar
  13. 13.
    Q. Fu, J. Sun, and W. Zhang, Recent Pat. Anticancer Drug Discov., 4(3), 262 – 272 (2009).CrossRefPubMedGoogle Scholar
  14. 14.
    B. Elsadek and F. Kratz, J. Control. Rel., 157, 4 – 28 (2012).CrossRefGoogle Scholar
  15. 15.
    M. J. Hawkins, P. Soon-Shiong, and N. Desai, Adv. Drug Deliv. Rev., 60(8), 876 – 885 (2007).CrossRefGoogle Scholar
  16. 16.
    S. Schmidt, K. Röck, and M. Sahre, et al., Antimicrob. Agents Chemother., 52(11), 3994 – 4000 (2008).CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    M. A. Zeitlinger, H. Derendorf, and J. W. Mouton, et al., Antimicrob. Agents Chemother., 55(7), 3067 – 3074 (2011).CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    J.-D. Yang, S.-X. Deng, and Z.-F. Liu, et al., Luminescence, 22(6), 559 – 566 (2007).CrossRefPubMedGoogle Scholar
  19. 19.
    M. F. Brown, S. Omar, R. A. Raubach, et al., Biochemistry, 16(5), 987 – 992 (1977).CrossRefPubMedGoogle Scholar
  20. 20.
    M. van de Weert, J. Fluoresc., 20(2), 625 – 629 (2010).CrossRefPubMedGoogle Scholar
  21. 21.
    U. Kragh-Hansen, V. T. G. Chuang, and M. Otagir, Biol. Pharm. Bull., 25(6), 695 – 704 (2002).CrossRefPubMedGoogle Scholar
  22. 22.
    C.-X. Wang, F.-F. Yan, and Y.-X. Zhang, et al., J. Photochem. Photobiol. A Chem., 192, 23 – 28 (2007).CrossRefGoogle Scholar
  23. 23.
    B. V. Nikonenko and C. Hanrahan, Rus. J. Immunol., 7(4), 307 – 322 (2002).Google Scholar
  24. 24.
    B. V. Nikonenko, R. Samala, and L. Einck, et al., Antimicrob. Agents Chemother., 48(12), 4550 – 4555 (2004).CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    P. J. Cardona, A. Cooper, M. Luquin, et al., Scand. J. Immunol., 49(4), 362 – 366 (1999).CrossRefPubMedGoogle Scholar
  26. 26.
    D. Young, Eur. J. Immunol., 39(8), 2011 – 2014 (2009).CrossRefPubMedGoogle Scholar
  27. 27.
    L. Heifets, Drugs of Today, 35(8), 7 – 16 (1999).Google Scholar
  28. 28.
    I. M. Rosenthal, K. Williams, S. Tyagi, et al., Am. J. Respir. Crit. Care Med., 174(1), 94 – 101 (2006).Google Scholar
  29. 29.
    A. M. J. A. Lenaerts, S. E. Chase, A. J. Chmielewski, et al., Antimicrob. Agents Chemother., 43(10), 2356 – 2360 (1999).PubMedPubMedCentralGoogle Scholar
  30. 30.
  31. 31.
  32. 32.
    K. P. Ostrovskii, N. S. Osipova, L. V. Vanchugova, et al., Khim.-Farm. Zh., 50(6), 39 – 44 (2016); Pharm. Chem. J., 50(6), 407 – 412 (2016).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • K. P. Ostrovskii
    • 1
  • N. S. Osipova
    • 1
  • L. V. Vanchugova
    • 1
  • E. V. Shipulo
    • 1
  • V. D. Potapov
    • 2
  • É. R. Pereverzeva
    • 3
  • I. D. Treshchalin
    • 3
  • O. O. Maksimenko
    • 1
  • S. É. Gel’perina
    • 1
  1. 1.Nanosistema Scientific Industrial ComplexMoscowRussia
  2. 2.State Scientific Center for Applied Microbiology and BiotechnologySerpukhov DistrictRussia
  3. 3.G. F. Gauze Science Research Institute for the Discovery of New AntibioticsMoscowRussia

Personalised recommendations