Advertisement

Pharmaceutical Chemistry Journal

, Volume 51, Issue 7, pp 582–589 | Cite as

Synthesis of Coumarin Appended 1,3-Oxazines as Potent Antimicrobial and Antioxidant Agents

  • Renuka Nagamallu
  • Pavithra Gurunanjappa
  • Ajay Kumar Kariyappa
Article

A convenient protocol for the synthesis of coumarin appended 1,3-benzoxazine derivatives (4a – 4g) is described. Cyclisation of hydrazones (3a – 3g) using triphosgene in dichloromethane gave the corresponding 1,3-oxazines in a relatively good yield. The proposed structures of newly synthesized compounds were confirmed by spectral methods and elemental analysis. Oxazine derivatives 4a – 4g were evaluated for their in vitro antimicrobial activity against various bacteria and fungi. Compounds 4b and 4d inhibited growth of test microbes thus proving significant antimicrobial activity. In addition, in vitro antioxidant activity of the synthesized compounds was evaluated and compared to that of standards, showing DPPH, NO, and OH radical scavenging properties. Compounds 4b and 4f exhibited higher antioxidant activity than a standard drug.

Keywords

antioxidant antimicrobial coumarin hydrazones oxazine triphosgene 

Notes

Acknowledgements

The authors are grateful to the University Grants Commission, New Delhi, for financial support through major research project grant (F: 42-230/2013 (SR) dated March 25, 2013). One of the authors, Renuka N, is grateful to the UGC for awarding NON-NET Fellowship (Order No. DV9/192/NON-NETFS/2013-14, dated November 11, 2013).

References

  1. 1.
    K. M. Dawood, N. M. Elwan, A. A. Farah, et al., J. Heterocyclic Chem., 47, 243 – 267 (2010).Google Scholar
  2. 2.
    N. T. Patil and Y. Yamamoto, Chem. Rev., 108, 3395 – 3442 (2008).CrossRefPubMedGoogle Scholar
  3. 3.
    I. Kostova, Curr. Med. Chem., 5, 29 – 46 (2005).Google Scholar
  4. 4.
    T. Zuhal, P. Emel, K. Adem, Molecules, 12(3), 345 – 352 (2007).CrossRefGoogle Scholar
  5. 5.
    V. Vikas, S. Kuldeep, K. Devinder, et al., Eur. J. Med. Chem., 56, 195 – 202 (2012).CrossRefGoogle Scholar
  6. 6.
    L. Bemameur, Z. Bouaziz, P. Nebois, et al., Chem. Pharm. Bull., 44, 605 – 608 (1996).CrossRefGoogle Scholar
  7. 7.
    T. Yukako, A. Yuko, K. Hidemi, et al., Bioorg. Med. Chem., 17, 3959 – 3967 (2009).CrossRefGoogle Scholar
  8. 8.
    C. Singh, H. K. Parwana, and G. Singh, Indian J. Pharm. Sci., 57, 198 – 202 (1995).Google Scholar
  9. 9.
    N. Latif, N. Mishriky, and F. M. Assad, Aust. J. Chem., 35, 1037 – 1043 (1982).CrossRefGoogle Scholar
  10. 10.
    S. A. B. Abdullah, M. A. M. Abdullah, A. A. S. Mohammed, et al., Molecules, 14, 2147 – 2159 (2009).CrossRefGoogle Scholar
  11. 11.
    A. Andreani, A. Leoni, R. Locatelli, et al., Eur. J. Med. Chem., 68, 412 – 421 (2013).CrossRefPubMedGoogle Scholar
  12. 12.
    R. Nagamallu and A. K. Kariyappa, Bioorg. Med. Chem. Lett., 23, 6406 – 6409 (2013).CrossRefPubMedGoogle Scholar
  13. 13.
    T. D. Rojas-Walker, S. Tamir, H. Ji, et al., Chem. Res., 8, 473 – 477 (1995).Google Scholar
  14. 14.
    P. Hochestein and A. S. Atallah, Mutat. Res., 202, 363 – 375 (1988).CrossRefGoogle Scholar
  15. 15.
    P. Jayaroopa and K. Ajay Kumar, Int. J. Pharm. Pharm. Sci., 5 (4), 431 – 433 (2013).Google Scholar
  16. 16.
    N. Renuka, G. Pavithra, and K. Ajay Kumar, Pharma Chem., 6(1), 482 – 485 (2014).Google Scholar
  17. 17.
    A. Padmaja, C. Rajashekar, A. Muralikrishna, and V. Padmavathi, Eur. J. Med. Chem., 46, 5034 – 5038 (2011).CrossRefPubMedGoogle Scholar
  18. 18.
    J. Jayaraman, T. Venugopal, R. Nagarajan, et al., Med. Chem. Res., 21, 1850 – 1860 (2012).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Renuka Nagamallu
    • 1
  • Pavithra Gurunanjappa
    • 1
  • Ajay Kumar Kariyappa
    • 1
  1. 1.PG Department of ChemistryYuvaraja’s College, University of MysoreMysoreIndia

Personalised recommendations