Pharmaceutical Chemistry Journal

, Volume 51, Issue 7, pp 564–575 | Cite as

Facile One-Pot Synthesis Methodology for Nitrogen-Containing Heterocyclic Derivatives of 3,5-Disubstituted 4,5-Dihydro-1H-Pyrazole, Their Biological Evaluation and Molecular Docking Studies

  • Savita Upadhyay
  • Avinash C. Tripathi
  • Sarvesh Paliwal
  • Shailendra K. Saraf
Article
  • 52 Downloads

A series of 2-pyrazoline derivatives (PS-1 to PS-16) were synthesized by reacting different aromatic/heteroaromatic aldehydes and ketones, in a two-step reaction through Claisen – Schmidt condensation, followed by cyclization of the resulting chalcones with hydrazine hydrate in the presence of a base using conventional and microwave approaches. The synthesized derivatives were characterized by various physicochemical methods including IR, 1H-NMR, 13C-NMR, and mass spectroscopic data and elemental analysis. The antidepressant and anti-anxiety activities were evaluated using suitable animal models. Compounds PS-3, and PS-14 showed noticeable antidepressant activity, by reducing the duration of immobility in both tests, while compounds PS-9 and PS-12 were found to possess good anxiolytic activity (by increasing the number of arm entries and open arm exploratory time) at the tested doses (50 and 100 mg/kg b.w.) in comparison to standard drugs imipramine and diazepam, respectively. In order to elucidate binding interactions of the synthesized derivatives to the MAO-A target protein, molecular docking was employed which demonstrated the key interactions with amino acid residues Phe208, Asn181, and Tyr407 at the binding site. Further, the ADME properties of the synthesized derivatives were predicted and found to fall within the stated limits.

Keywords

3, 5-Disubstituted-4,5-dihydro-(1H)-pyrazoles antidepressant anti-anxiety: MAO inhibitors microwave synthesis molecular docking 

Notes

Acknowledgements

We express our sincere gratitude to Central Drugs Research Institute (CDRI), Lucknow, India for providing the library and sophisticated analytical instrument facilities. Authors are thankful to the All India Council for Technical Education (AICTE), New Delhi, India, for providing grant under the Research Promotion Scheme (RPS), through which the computational software facility has been made available at the host institute. We also want to acknowledge the technical support team/application scientists of Schrodinger Inc. for their help during computational studies.

Conflict of Interest

The authors declare no conflict of interest.

References

  1. 1.
    C. Binda, P. Newton-Vinson, F. Hubalek, et al., Nat. Struct. Biol., 9, 22 – 26 (2002).CrossRefPubMedGoogle Scholar
  2. 2.
    M. Bortolato, K. Chen, and J. C. Shih, Adv. Drug Deliv. Rev., 60, 1527 – 1533 (2008).CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    R. Chawla, U. Sahoo, A. Arora, et al., Acta Pol. Pharm., 67, 55 – 61 (2010).PubMedGoogle Scholar
  4. 4.
    F. Chimenti, A. Bolasco, F. Manna, et al., J. Med. Chem., 47, 2071 – 2074 (2004).CrossRefPubMedGoogle Scholar
  5. 5.
    F. Chimenti, A. Bolasco, F. Manna, et al., Curr. Med. Chem., 13, 1411 – 1428 (2006).CrossRefPubMedGoogle Scholar
  6. 6.
    F. Chimenti, E. Maccioni, D. Secci, et al., J. Med. Chem., 48, 7113 – 7122 (2005).CrossRefPubMedGoogle Scholar
  7. 7.
    P. Dixit, A. C. Tripathi, and S. K. Saraf, J. Heterocycl. Chem., 50, 1431 – 1436 (2013).CrossRefGoogle Scholar
  8. 8.
    D. E. Edmondson, C. Binda, and A. Mattevi, Neurotoxicology, 25, 63 – 72 (2004).CrossRefPubMedGoogle Scholar
  9. 9.
    N. Gokhan-Kelekci, S. Yabanoglu, E. Kupeli, et al., Bioorg. Med. Chem., 15, 5775 – 5786 (2007).CrossRefPubMedGoogle Scholar
  10. 10.
    N. Gokhan, A. Yesilada, G. Ucar, et al., Arch. Pharm. (Weinheim), 336, 362 – 371 (2003).CrossRefGoogle Scholar
  11. 11.
    V. Jayaprakash, B. N. Sinha, G. Ucar, et al., Bioorg. Med. Chem. Lett., 18, 6362 – 6368 (2008).CrossRefPubMedGoogle Scholar
  12. 12.
    B. S. Jayashree, S. Arora, and K. N. Venugopala, Asian J. Chem., 20, 1 – 7 (2008).Google Scholar
  13. 13.
    M. Karuppasamy, M. Mahapatra, S. Yabanoglu, et al., Bioorg. Med. Chem., 18, 1875 – 1881 (2010).CrossRefPubMedGoogle Scholar
  14. 14.
    S. Kumar, S. Bawa, S. Drabu, et al., Recent Pat. Antiinfect. Drug Discov., 4, 154 – 163 (2009).CrossRefPubMedGoogle Scholar
  15. 15.
    P. Lidstrom, J. Tierney, B. Wathey, et al., Tetrahedron, 57, 9225 – 9283 (2001).CrossRefGoogle Scholar
  16. 16.
    R. G. Lister, Psychopharmacology, 92, 180 – 185 (1987).PubMedGoogle Scholar
  17. 17.
    F. Manna, F. Chimenti, A. Bolasco, et al., J. Enzyme Inhib., 13, 207 – 216 (1998).CrossRefPubMedGoogle Scholar
  18. 18.
    F. Manna, F. Chimenti, A. Bolasco, et al., Bioorg. Med. Chem. Lett., 12, 3629 – 3633 (2002).CrossRefPubMedGoogle Scholar
  19. 19.
    N. Mishra and D. Sasmal, Bioorg. Med. Chem. Lett., 21, 1969 – 1973 (2011).CrossRefPubMedGoogle Scholar
  20. 20.
    E. M. Nurminen, M. Pihlavisto, L. Lazar, et al., J. Med. Chem., 54, 2143 – 2154 (2011).CrossRefPubMedGoogle Scholar
  21. 21.
    P. Pacher, E. Kohegyi, V. Kecskemeti, et al., Curr. Med. Chem., 8, 89 – 100 (2001).CrossRefPubMedGoogle Scholar
  22. 22.
    S. S. Parmar, B. R. Pandey, C. Dwivedi, et al., J. Pharm. Sci., 63, 1152 – 1155 (1974).CrossRefPubMedGoogle Scholar
  23. 23.
    S. Pellow, P. Chopin, S. E. File, et al., J. Neurosci. Meth., 14, 149 – 167 (1985).CrossRefGoogle Scholar
  24. 24.
    A. Pletscher, Experientia, 47, 4 – 8 (1991).CrossRefPubMedGoogle Scholar
  25. 25.
    R. D. Porsolt, Antidepressants, in S. J. Enna, J. B. Malick, E. Richelson (eds.), Neurochemical, Behavioral and Clinical Perspectives, Raven Press, New York (1981), pp. 129 – 139.Google Scholar
  26. 26.
    R. D. Porsolt, A. Bertin, M. Jalfre, Arch. Int. Pharmacodyn. Ther., 229, 327 – 336 (1977).PubMedGoogle Scholar
  27. 27.
    Y. Rajendra Prasad, A. Lakshmana Rao, L. Prasoona, et al., Bioorg. Med. Chem. Lett., 15, 5030 – 5034 (2005).CrossRefPubMedGoogle Scholar
  28. 28.
    A. Sahoo, S. Yabanoglu, B. N. Sinha, et al., Bioorg. Med. Chem. Lett., 20, 132 – 136 (2010).CrossRefPubMedGoogle Scholar
  29. 29.
    L. Steru, R. Chermat, B. Thierry, et al., Psychopharmacology, 85, 367 – 370 (1985).CrossRefPubMedGoogle Scholar
  30. 30.
    K. L. Stirrett, J. A. Ferreras, V. Jayaprakash, et al., Bioorg. Med. Chem. Lett., 18, 2662 – 2668 (2008).CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    G. D. Tollefson, J. Clin. Psychiatry, 44, 280 – 288 (1983).PubMedGoogle Scholar
  32. 32.
    G. Ucar, C. Tas, and A. Tumer, Toxicon, 45, 43 – 52 (2005).CrossRefPubMedGoogle Scholar
  33. 33.
    S. Valente, S. Tomassi, G. Tempera, et al., J. Med. Chem., 54, 8228 – 8232 (2011).CrossRefPubMedGoogle Scholar
  34. 34.
    H. G. Vogel (ed.), Drug Discovery and Evaluation: Pharmacological Assays, Springer-Verlag, Berlin, Heidelberg (2002), pp 385 – 594.Google Scholar
  35. 35.
    P. Willner, P. J. Mitchell, Behav. Pharmacol., 13, 169 – 188 (2002).CrossRefPubMedGoogle Scholar
  36. 36.
    M. B. Youdim, D. Edmondson, and K. F. Tipton, Nat. Rev. Neurosci., 7, 295 – 309 (2006).CrossRefPubMedGoogle Scholar
  37. 37.
    S. Zisook, Psychosomatics, 26, 240 – 246, 251 (1985).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Savita Upadhyay
    • 1
  • Avinash C. Tripathi
    • 1
  • Sarvesh Paliwal
    • 2
  • Shailendra K. Saraf
    • 1
  1. 1.Faculty of PharmacyBabu Banarasi Das Northern India Institute of TechnologyLucknowIndia
  2. 2.Department of PharmacyBanasthali Vidyapith, BanasthaliTonkIndia

Personalised recommendations