Pharmaceutical Chemistry Journal

, Volume 51, Issue 2, pp 91–99 | Cite as

Web Resources for Discovery and Development of New Medicines

  • V. M. Bezhentsev
  • D. S. Druzhilovskii
  • S. M. Ivanov
  • D. A. Filimonov
  • G. N. Sastry
  • V. V. Poroikov
SEARCH FOR NEW DRUGS

Modern drug discovery is based on the analysis of information about disease mechanisms, molecular targets, and pharmacological substances, the action of which helps to normalize pathological processes. Existing chemical and biomedical databases have recently been supplemented with many specialized computational resources that provide the means to estimate physicochemical properties, biological activity, toxicity, metabolism, and other characteristics of organic molecules in the early stages of drug development. Easy access to this information via the Internet expands significantly the opportunities for an investigator and, at the same time, poses the problem of selecting the information and computational resources most appropriate to the tasks at hand. This paper provides an overview of biomedical and chemical web resources freely available via the Internet and gives recommendations on their optimal use at various stages in the research and development of safer and more effective medicines.

Keywords

new drugs drug discovery and development biomedical and chemical databases computational web resources Internet 

Notes

Acknowledgments

The work was supported by RSF/DST Grant No. 16-45-02012/INT/RUS/RSF/12.

References

  1. 1.
    S. Mignani, S. Huber, H. Tomas, et al., Drug Discovery Today, 21(2), 239 – 249 (2016).CrossRefPubMedGoogle Scholar
  2. 2.
    J. Strovel, S. Sittampalam, N. P. Coussens, M. Hughes, J. Inglese, A. Kurtz, et al., Early drug discovery and development guidelines: for academic researchers, collaborators, and start-up companies; URL: https: // www.ncbi.nlm.nih.gov / books / NBK92015 / (2016).Google Scholar
  3. 3.
    URL: http: // pharma-2020.ruGoogle Scholar
  4. 4.
    J. A. DiMasi, H. G. Grabowski, and R. W. Hansen, J. Health Econ., 47, 20 – 33 (2016).CrossRefPubMedGoogle Scholar
  5. 5.
    URL: http: // pharma-2020.ru / projects / pharmprom /Google Scholar
  6. 6.
    C. G. Wermuth (ed.), The Practice of Medicinal Chemistry, Academic Press, Salt Lake City, USA (2015).Google Scholar
  7. 7.
    A. S. Ivanov, A. V. Veselovsky, A. V. Dubanov, and V. S. Skvortsov, in: Methods in Molecular Biology, Vol. 316, Bioinformatics and Drug Discovery, R. S. Larson (ed.), Humana Press Inc., Totowa, NJ, USA (2006), pp. 389 – 431.Google Scholar
  8. 8.
    V. V. Avidon, Khim.-farm. Zh., 8(8), 22 – 25 (1974); Pharm. Chem. J., 8(8), 476 – 479 (1974).Google Scholar
  9. 9.
    V. V. Avidon, V. S. Arolovich, V. G. Blinova, et al., Khim.-farm. Zh., 17(3), 321 – 324 (1983); Pharm. Chem. J., 17(3), 214 – 217 (1983).Google Scholar
  10. 10.
    P. M. Dean (ed.), Molecular Similarity in Drug Design, Blackie Academic & Professional, London (1995).Google Scholar
  11. 11.
    H. Kubinyi, J. Braz. Chem. Soc., 13(6), 717 – 726 (2002).CrossRefGoogle Scholar
  12. 12.
    Y. C. Martin, J. L. Kofron, and L. M. Traphagen, J. Med. Chem., 45(19), 4350 – 4358 (2002).CrossRefPubMedGoogle Scholar
  13. 13.
    URL: http: // www.chemnavigator.comGoogle Scholar
  14. 14.
    P. N. Dube, S. N. Mokale, S. I. Shaikh, et al., Pharm. Chem. J., 49(2), 125 – 131 (2015).CrossRefGoogle Scholar
  15. 15.
    A. Ya. Gerchikov, M. N. Vasil’ev, V. R. Khairullina, et al., Khim-farm. Zh., 49(9), 12 – 16 (2015); Pharm. Chem. J., 49(9), 582 – 586 (2015).Google Scholar
  16. 16.
    S. V. Pechinskii, A. G. Kuregyan, A. A. Ozerov, and M. S. Novikov, Khim.-farm. Zh., 49(10), 140 – 143 (2015); Pharm. Chem. J., 49(10), 683 – 686 (2015).Google Scholar
  17. 17.
    R. Sharma, A. Tiwari, and A. Parate, Pharm. Chem. J., 49(8), 537 – 542 (2015).CrossRefGoogle Scholar
  18. 18.
    O. A. Raevskii, S. V. Trepalin, V. Yu. Grigor’ev, et al., Khim.-farm. Zh., 48(1), 30 – 32 (2014); Pharm. Chem. J., 48(1), 26 – 28 (2014).Google Scholar
  19. 19.
    A. A. Lagunin, D. A. Filimonov, T. A. Gloriozova, et al., Khim.-farm. Zh., 47(7), 1 – 21 (2013); Pharm. Chem. J., 47(7), 343 – 360 (2013).Google Scholar
  20. 20.
    G. Sliwoski, S. Kothiwale, J. Meiler, et al., Pharmacol. Rev., 66(1), 334 – 395 (2014).CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    URL: https: // www.ncbi.nlm.nih.gov / pubmed /Google Scholar
  22. 22.
    URL: https: // pubchem.ncbi.nlm.nih.gov /Google Scholar
  23. 23.
    URL: https: // www.ebi.ac.uk / chembl /Google Scholar
  24. 24.
    URL: http: // www.disgenet.org /Google Scholar
  25. 25.
    URL: https: // www.omim.org /Google Scholar
  26. 26.
    P. Csermely, T. Korcsmaros, H. J. Kiss, et al., Pharmacol. Ther., 138(3), 333 – 408 (2013).CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    URL: http: // www.genome.jp / kegg /Google Scholar
  28. 28.
    URL: https: // david.ncifcrf.gov /Google Scholar
  29. 29.
    P. Khatri, M. Sirota, and A. J. Butte, PLoS Comput. Biol., 8(2), e1002375 (2012).CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    URL: http: // cbdm-01.zdv.uni-mainz.de / ~mschaefer / hippie /Google Scholar
  31. 31.
    URL: http: // www.guidetopharmacology.org /Google Scholar
  32. 32.
    URL:http: // pharos.nih.gov /Google Scholar
  33. 33.
    URL: http: // juniper.health.unm.edu / tcrd / api.htmlGoogle Scholar
  34. 34.
    URL: http: // bidd.nus.edu.sg / group / cjttd /Google Scholar
  35. 35.
    F. Zhu, Z. Shi, C. Qin, et al., Nucleic Acid Res., 40(3), 1128 – 1136 (2012).CrossRefGoogle Scholar
  36. 36.
    URL: http: // www.rcsb.org / pdb /Google Scholar
  37. 37.
    URL: https: // www.drugbank.ca /Google Scholar
  38. 38.
    D. Singla, S. K. Dhanda, J. S. Chauhan, et al., Curr. Top. Med. Chem., 13(10), 1172 – 1191 (2013).CrossRefPubMedGoogle Scholar
  39. 39.
    A. A. Lagunin, R. K. Goel, D. Y. Gawande, et al., Nat. Prod. Rep., 31(11), 1585 – 1611 (2014).CrossRefPubMedGoogle Scholar
  40. 40.
    D. S. Wishart, C. Knox, A. C. Guo, et al., Nucleic Acid Res., 34, D668 – 672 (2006).CrossRefPubMedGoogle Scholar
  41. 41.
    M. Kuhn, I. Letunic, L. J. Jensen, and P. Bork, Nucleic Acid Res., 44(D1), D1075 – 1079 (2015).CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    URL: http: // sideeffects.embl.de /Google Scholar
  43. 43.
    S. Kim, P. A. Thiessen, E. E. Bolton, et al., Nucleic Acid Res., 44(D1), D1202-D1213 (2016).CrossRefPubMedGoogle Scholar
  44. 44.
    URL: https: // pubchem.ncbi.nlm.nih.gov / pug rest / PUG REST.htmlGoogle Scholar
  45. 45.
    G. Papadatos, A. Gaulton, A. Hersey, and J. P. Overington, J. Comput.-Aided Mol. Des., 29(9), 885 – 896 (2015).CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    URL: https: // www.ebi.ac.uk / chembl / wsGoogle Scholar
  47. 47.
    https: /// www.ebi.ac.uk / chebi /Google Scholar
  48. 48.
    J. Hastings, P. de Matos, A. Dekker, et al., Nucleic Acid Res., 41(D1), D456-D463 (2012).CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    URL: https: // www.ebi.ac.uk / chebi / aboutChebiForward.doGoogle Scholar
  50. 50.
    URL: http: // www.chemspider.com /Google Scholar
  51. 51.
    A. Williams and V. Tkachenko, J. Comput.-Aided Mol. Des., 28(10), 1023 – 1030 (2014).CrossRefPubMedGoogle Scholar
  52. 52.
    URL: http: // www.chemspider.com /Google Scholar
  53. 53.
    URL: http: // zinc.docking.org /Google Scholar
  54. 54.
    URL: https: // www.molport.com /Google Scholar
  55. 55.
    URL: http: // www.ibscreen.com /Google Scholar
  56. 56.
    URL: http: // www.chembridge.com /Google Scholar
  57. 57.
    URL: http: // www.vcclab.org /Google Scholar
  58. 58.
    I. V. Tetko, J. Gasteiger, R. Todeschini, et al., J. Comput.-Aided Mol. Des., 19(6), 453 – 463 (2005).CrossRefPubMedGoogle Scholar
  59. 59.
    URL: https: // chembench.mml.unc.edu /Google Scholar
  60. 60.
    T. Walker, C. M. Grulke, D. Pozefsky, and A. Tropsha, Bioinformatics, 26(23), 3000 – 3001 (2010).CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    URL: http: // mpds.osdd.netGoogle Scholar
  62. 62.
    C. W. Yap, J. Comput. Chem., 32(7), 1466 – 1474 (2011).CrossRefPubMedGoogle Scholar
  63. 63.
    C. Steinbeck, Y. Han, S. Kuhn, et al., J. Chem. Inf. Comput. Sci., 43(2), 493 – 500 (2003).CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    M. J. Vainio and M. S. Johnson, J. Chem. Inf. Model., 45(6), 1953 – 1961 (2005).CrossRefPubMedGoogle Scholar
  65. 65.
    URL: http: // svmlight.joachims.org /Google Scholar
  66. 66.
    O. Trott and A. J. Olson, J. Comput. Chem., 31(2), 455 – 461 (2010).PubMedPubMedCentralGoogle Scholar
  67. 67.
    URL: http: // www.way2drug.comGoogle Scholar
  68. 68.
    T. A. Gloriozova, D. A. Filimonov, A. A. Lagunin, and V. V. Poroikov, Khim.-farm. Zh., 32(12), 32 – 39 (1998); Pharm. Chem. J., 32(12), 656 – 657 (1998).Google Scholar
  69. 69.
    A. Lagunin, A. Stepanchikova, D. Filimonov, and V. Poroikov, Bioinformatics, 16(8), 747 – 748 (2000).CrossRefPubMedGoogle Scholar
  70. 70.
    A. V. Sadym, A. A. Lagunin, D. A. Filimonov, and V. V. Poroikov, Khim.-farm. Zh., 36(10), 21 – 26 (2002); Pharm. Chem. J., 36(10), 535 – 537 (2002).Google Scholar
  71. 71.
    A. Geronikaki, D. Druzhikovsky, A. Zakharov, and V. Poroikov, SAR QSAR Environ. Res., 19(1 – 2), 27 – 38 (2008).CrossRefPubMedGoogle Scholar
  72. 72.
    D. A. Filimonov, A. A. Lagunin, T. A. Gloriozova, et al., Chem. Heterocycl. Compd., 50(3), 444 – 457 (2014).CrossRefGoogle Scholar
  73. 73.
    URL: http: // www.way2drug.com / PASSOnline / reference. phpGoogle Scholar
  74. 74.
    K. Anusevicius, V. Mickevicius, M. Stasevych, et al., Res. Chem. Intermed., 41(10), 7517 – 7540 (2015).CrossRefGoogle Scholar
  75. 75.
    D. S. Druzhilovskii, A. V. Rudik, D. A. Filimonov, et al., Izv. Akad. Nauk, Ser. Khim., 65(2), 384 – 393 (2016).Google Scholar
  76. 76.
    D. A. Filimonov, A. V. Zakharov, A. A. Lagunin, and V. V. Poroikov, SAR QSAR Environ. Res., 20(7 – 8), 679 – 709 (2009).CrossRefPubMedGoogle Scholar
  77. 77.
    A. Lagunin, A. Zakharov, D. Filimonov, and V. Poroikov, Mol. Inf., 30(2 – 3), 241 – 250 (2011). 78. A. V. Zakharov, A. A. Lagunin, D. A. Filimonov, andGoogle Scholar
  78. 78.
    V. V. Poroikov, Chem. Res. Toxicol., 25(11), 2378 – 2385 (2012).CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    P. V. Pogodin, A. A. Lagunin, D. A. Filimonov, and V. V. Poroikov, SAR QSAR Environ. Res., 26(10), 783 – 793 (2015).CrossRefPubMedGoogle Scholar
  80. 80.
    V. Konova, A. Lagunin, P. Pogodin, E. Kolotova, et al., SAR QSAR Environ. Res., 26(7 – 9), 595 – 604 (2015).CrossRefPubMedGoogle Scholar
  81. 81.
    URL: http: // way2drug.com / mgGoogle Scholar
  82. 82.
    V. Poroikov, Mol. Inf., 34(6 – 7), 340 (2015).CrossRefGoogle Scholar
  83. 83.
    T. Lengauer (ed.), Bioinformatics – From Genomes to Drugs, 2nd Ed., Wiley-VCH Verlag GmbH, Mannheim, Germany (2004).Google Scholar
  84. 84.
    C. Auffray, D. Charrin, and L. Hood, Genome Med., 2:57 (2010).CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    L. Hood and C. Auffray, Genome Med., 5:110 (2013).CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    A. J. Williams, S. Ekins, and V. Tkachenko, Drug Discovery Today, 17(13 – 14), 685 – 701 (2012).CrossRefPubMedGoogle Scholar
  87. 87.
    C. Kramer, T. Kalliokoski, P. Gedeck, and A. Vulpetti, J. Med. Chem., 55(11), 5165 – 5173 (2012).CrossRefPubMedGoogle Scholar
  88. 88.
    O. A. Tarasova, A. F. Urusova, D. A. Filimonov, et al., J. Chem. Inf. Model., 55(7), 1388 – 1399 (2015).CrossRefPubMedGoogle Scholar
  89. 89.
    I. V. Tetko, O. Engkvist, and H. Chen, Future Med. Chem., 8(15), 1801 – 1806 (2016).CrossRefPubMedGoogle Scholar
  90. 90.
    S. M. Ivanov, A. A. Lagunin, and V. V. Poroikov, Drug Discovery Today, 21(1), 58 – 71 (2016).CrossRefPubMedGoogle Scholar
  91. 91.
    I. V. Tetko, U. Maran, and A. Tropsha, Mol. Inf., 36(3), 25 Oct. 2016; doi: 10.1002 / minf.201600082 [Epub ahead of print] (2016).Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • V. M. Bezhentsev
    • 1
  • D. S. Druzhilovskii
    • 1
  • S. M. Ivanov
    • 1
  • D. A. Filimonov
    • 1
  • G. N. Sastry
    • 2
  • V. V. Poroikov
    • 1
  1. 1.V. N. Orekhovich Research Institute of Biomedical ChemistryMoscowRussia
  2. 2.CSIR-Indian Institute of Chemical TechnologyHyderabadIndia

Personalised recommendations