Skip to main content

Advertisement

Log in

Synthesis and Cytotoxic Activity of (4-Substituted-benzylidene)-(3-Phenyl-1,2,4-Oxadiazol-5-YL)Methylamines

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

This work was aimed at the synthesis and investigation of the cytotoxic activity of a series of Schiff bases having (4-substituted-benzylidene)-(3-phenyl-1,2,4-oxadiazol-5-yl)methylamine structure with different electronic natures of substituents in the phenyl ring. Thus, the study was intended to observe the effect of substituents with different electronic properties on the cytotoxic activity. The synthesized series of compounds (OP) were obtained by six-step synthesis with yields ranging from 12.23 to 25.77%. The chemical structures of these compounds were elucidated by H NMR. The cytotoxicity of compounds against human oral squamous cell carcinoma cell lines [Ca9-22 (gum), HSC-2 (mouth), HSC-3 (fluent), HSC-4 (language)] and human oral normal cells [HGF (gum fibroblasts), HPC (pulp cells), and HPLF (periodontal ligament fibroblasts)] was tested by MTT assay. Among the group of six OP compounds, bromo derivative OP2, non-substituted derivative OP1, and chloro derivative OP3 showed higher cytotoxicity (2.71-, 1.56-, and 1.53-fold, respectively) than the reference compound 5-FU. In addition, OP2 (3.27) exhibited the greatest selectivity index in this group. These compounds can be considered to be model structures for further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1

Similar content being viewed by others

References

  1. S. J. Shaw, Mini Rev. Med. Chem., 8 (3), 276 – 284 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. H. Varmus, Science, 312 (5777), 1162 – 1165 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. M. R. Harrison, K. D. Holen, and G. Liu, Clin. Adv. Hematol. Oncol., 7 (1), 54 – 64 (2009).

    PubMed  PubMed Central  Google Scholar 

  4. G. D. Diana, D. L. Volkots, T. J. Nitz, et al., J. Med. Chem., 37 (15), 2421 – 2436 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. R. H. Tale, A. H. Rodge, A. P. Keche, et al., J. Chem. Pharm. Res., 3(2), 496 – 505 (2011).

    CAS  Google Scholar 

  6. J. W. Watthey, M. Desai, R. Rutledge, et al., J. Med. Chem., 23 (6), 690 – 692 (1980).

    Article  CAS  PubMed  Google Scholar 

  7. H. J. Lankau, K. Unverferth, C. Grunwald, et al., Eur. J. Med. Chem., 42 (6), 873 – 879 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. H. Z. Zhang, S. Kasibhatla, J. Kuemmerle, et al., J. Med. Chem., 48 (16), 5215 – 5223 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. D. Kumar, G. Patel, E. O. Johnson, et al., Bioorg. Med. Chem. Lett., 19 (10), 2739 – 2741 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. D. Kumar, G. Patel, A. K. Chavers, et al., Eur. J. Med. Chem., 46 (7), 3085 – 3092 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. J. Cai, H.Wei, K. H. Hong, et al., Eur. J. Med. Chem., 96, 1 – 13 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Z. Cimerman, S. Miljanic, and N. Galic, Croat. Chem. Acta, 73 (1), 81 – 95 (2000).

    CAS  Google Scholar 

  13. P. Vicini, A. Geronikaki, M. Incerti, et al., Bioorg. Med. Chem., 11 (22), 4785 – 4789 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. M. T. Tarafder, A. Kasbollah, N. Saravanan, et al., J. Biochem. Mol. Biol. Biophys., 6 (2), 85 – 91 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. L. Shi, H. M. Ge, S. H. Tan, et al., Eur. J. Med. Chem., 42 (4), 558 – 564 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. K. Cheng, Q. Z. Zheng, J. Hou, et al., Bioorg. Med. Chem., 18 (7), 2447 – 2455 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. K. Cheng, Q. Z. Zheng, Y. Qian, et al., Bioorg. Med. Chem., 17 (23), 7861 – 7871 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. I. Kucukguzel, S. Guniz Kucukguzel, S. Rollas, et al., Farmaco, 59 (11), 893 – 901 (2004).

    Article  PubMed  Google Scholar 

  19. N. P. Rai, V. K. Narayanaswamy, T. Govender, et al., Eur. J. Med. Chem., 45 (6), 2677 – 2682 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. H. R. Lawrence, S. Ozcan, and S. M. Sebti, WO2012129564 A2 (2012).

  21. A. Q. Hussein, Heterocycles, 26 (1), 163 – 173 (1987).

    Article  CAS  Google Scholar 

  22. Q. Zhao, S. Liu, Y. Li, et al., J. Agric. Food Chem., 57 (7), 2849 – 2855 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. F. Sigmund and R. Uchann, Monatch. Chem., 51, 250 (1929).

    Google Scholar 

  24. E. Saripinar, Y. Guzel, Z. Onal, et al., J. Chem. Soc. Pakistan, 22, 308 – 317 (2000).

    CAS  Google Scholar 

  25. E. Şahin, Author’s Abstract of Cand. Sci. (Chem.) Ms Thesis, Kayseri (2007).

  26. S. Bilginer, H. I. Gul, E. Mete, et al., J. Enzyme Inhib. Med. Chem., 28 (5), 974 – 980 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the Scientific and Technological Research Council of Turkey (TUBITAK) for financial support (Project Number: 114S584) and Ataturk University Faculty of Science Department of Organic Chemistry for taking 1H NMR spectra of compounds.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. Kucukoglu or H. Sakagami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kucukoglu, K., Tugrak, M., Demirtas, A. et al. Synthesis and Cytotoxic Activity of (4-Substituted-benzylidene)-(3-Phenyl-1,2,4-Oxadiazol-5-YL)Methylamines. Pharm Chem J 50, 234–238 (2016). https://doi.org/10.1007/s11094-016-1429-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-016-1429-7

Keywords

Navigation