Advertisement

Pharmaceutical Chemistry Journal

, Volume 50, Issue 3, pp 137–142 | Cite as

DNA Binding Mode and Affinity of Antitumor Drugs of 2-aroylbenzofuran-3-ols: Molecular Dynamics Simulation Study

  • Mohsen SargolzaeiEmail author
  • Hossein Nikoofard
  • Mahdi Afshar
Article

Molecular docking and molecular dynamics (MD) simulations were used for determining the binding positions of 2-aroylbenzofuran-3-ols, which positions cannot be attained from experimental studies. MD simulation was performed for all initial structures docked within 15000 ps. RMSD and potential energy analysis showed that all simulations reach equilibrium after 3000 ps. Analysis of the simulation trajectories showed that the structures of initial docked complexes and equilibrium structures in MD are identical. Moreover, a direct relation between steric hindrance of R2 substituent group and binding mode on DNA structure was found. The MM/GBSA analysis showed that the van der Waals (vdW) energy term is the most important energy term in binding process. It has been also found that the vdW and non-polar energy terms (∆G sur) are favorable for binding. At the same time, the polar groove-binding energy term (∆G GB) is an unfavorable term in the predicted binding free energy (∆G binding).

Keywords

benzofuran docking molecular dynamics calf-thymus DNA 

Notes

Acknowledgements

The computing facilities of Materials Simulation Laboratory at the Department of Physics, Iran University of Science and Technology (IUST) were used.

References

  1. 1.
    S. Rizzo, et al., J. Med. Chem., 51, 2883 (2008).CrossRefPubMedGoogle Scholar
  2. 2.
    C. Kirilmis, et al., Eur. J. Med. Chem., 43, 300 (2008).CrossRefPubMedGoogle Scholar
  3. 3.
    G. F. Filzen, et al., Bioorg. Med. Chem. Lett., 17, 3630 (2007).CrossRefPubMedGoogle Scholar
  4. 4.
    M. Dixit, et al., Bioorg. Med. Chem., 15, 727 (2007).CrossRefPubMedGoogle Scholar
  5. 5.
    F. A. E.-F. Ragab, N. M. Eid, G. S. Hassan, and Y. M. Nissan, Chem. Pharm. Bull., 60, 110 (2012).CrossRefPubMedGoogle Scholar
  6. 6.
    W.-J. Song, et al., RSC Adv., 2, 4612 (2012).CrossRefGoogle Scholar
  7. 7.
    R. K Sahu, et al., J. Med. Plants Res., 7, 1 – 22(2013).Google Scholar
  8. 8.
    S. A. Galal, A. S. Abd El-All, M. M. Abdallah, and H. I. El-Diwani, Bioorg. Med. Chem. Lett., 19, 2420 (2009).CrossRefPubMedGoogle Scholar
  9. 9.
    K. Murata, et al., J Biol Chem., 278, 32892 (2003).CrossRefPubMedGoogle Scholar
  10. 10.
    Y. L. Bennani, M. G. Campbell, D. Dastrup, and E. P. Huck, US Patent Application no. 20070197526 (2007).Google Scholar
  11. 11.
    A. Stroba, et al., J. Med. Chem., 52, 4683 (2009).CrossRefPubMedGoogle Scholar
  12. 12.
    S. Mahboobi, et al., J. Med. Chem., 50, 4405 (2007).CrossRefPubMedGoogle Scholar
  13. 13.
    B. Gabriele, et al., ChemSusChem 4, 1778 (2011).CrossRefPubMedGoogle Scholar
  14. 14.
    Z.-Z. Zhou, et al., Chem. Pharm. Bull., 59, 1057 (2011).CrossRefPubMedGoogle Scholar
  15. 15.
    Mark A. Thompson, ArgusLab 4.0.1, Planaria Software LLC, Seattle, WA; http://www.arguslab.com /
  16. 16.
    C. I. Bayly, P. Cieplak, W. Cornell, and P. A. Kollman, J. Phys. Chem., 97, 10269 (1993).CrossRefGoogle Scholar
  17. 17.
    A. D. Becke, J. Chem. Phys., 98, 5648 (1993).CrossRefGoogle Scholar
  18. 18.
    T. Skauge, I. Turel, and E. Sletten, Inorg. Chim. Acta., 339, 239 (2002).CrossRefGoogle Scholar
  19. 19.
    T. E. Cheatham, P. Cieplak, and P. A. Kollman, J. Biomol. Struct. Dyn., 16, 845 (1999).CrossRefPubMedGoogle Scholar
  20. 20.
    A. Pérez, et al., Biophys J., 92, 3817 (2007).CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    J. Wang, R. M. Wolf, J. W. Caldwell, et al. J. Quantum Chem., 25, 1157 (2004).Google Scholar
  22. 22.
    D. A. Case, et al., J. Comput. Chem., 26, 1668 (2005).CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, and J. Hermans, in Intermolecular Forces, B. Pullman (Ed.), Springer, Netherlands (1981), pp. 331 – 342.Google Scholar
  24. 24.
    G. Parisi and Wu Yongshi, Sci. Sin., 24, 483 (1981).Google Scholar
  25. 25.
    P. A. Kollman, et al., Acc. Chem. Res., 33, 889 (2000).CrossRefPubMedGoogle Scholar
  26. 26.
    J.Wang, T. Hou, and X. Xu, Curr. Comput. Aided Drug Des., 2, 287 (2006).Google Scholar
  27. 27.
    Gaussian 03, Revision C.02, M. J. Frisch, et al., Gaussian, Inc., Wallingford, CT (2004).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Mohsen Sargolzaei
    • 1
    Email author
  • Hossein Nikoofard
    • 1
  • Mahdi Afshar
    • 2
  1. 1.Department of ChemistryShahrood University of TechnologyShahroodIran
  2. 2.Materials Simulation Laboratory, Department of PhysicsIran University of Science and TechnologyNarmakIran

Personalised recommendations