Skip to main content

Advertisement

Log in

Succinate Receptors (SUCNR1) as a Potential Target for Pharmacotherapy

  • MOLECULAR BIOLOGY PROBLEMS OF DRUG DESIGN AND MECHANISM OF DRUG ACTION
  • Published:
Pharmaceutical Chemistry Journal Aims and scope

A considerable number of reports have been published in recent years on G protein-coupled receptors, their distribution in the body, mechanism of activation, and potential pathways for pharmacological actions. Intermediates in carbohydrate, fat, and protein metabolism and the tricarboxylic acid cycle, operating as endogenous ligands for a large group of ex-orphan receptors, have active roles in regulating metabolic processes, while their synthetic analogs, operating as both agonists and antagonists, may have potential for the development of new pharmaceuticals for a wide range of diseases (diabetes mellitus, obesity, metabolic syndrome, autoimmune disorders, hypertension, myocardial hypertrophy and ischemia, neurodegenerative processes, liver diseases, etc.). The present review addresses GPR91 (SUCNR1) receptors, which have been identified in fatty tissue, liver, kidneys, heart, brain, retinal neurons, dendritic cells, and platelets, and which are regarded as physiological regulators and cell sensors for stress-induced damage and hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Bay, L. F. Eghorn, A. B. Klein, and P. Wellendorph, Biochem. Pharmacol., 87(2), 200 – 228 (2014).

    Article  Google Scholar 

  2. P. M. Deen and J. H. Robben, J. Am. Soc. Nephrol., 22(8), 1416 – 1422 (2011).

    Article  CAS  Google Scholar 

  3. J. H. Robben, R. A. Fenton, S. L. Vargas, et al., Kidney International., 76(12), 1258 – 1267 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. A. C. Ariza, P. M. Deen, and J. H. Robben, Front. Endocrinol., 322, 1 – 8 (2012).

    Google Scholar 

  5. W. He, F. J. Miao, D. C. Lin, et al., Nature, 429(6988), 188 – 193 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. S. V. Okovityi, V. V. Gaivoronskaya, A. N. Kulikov, and S. N. Shulenin, Clinical Pharmacology. Selected Lectures [in Russian], GÉOTAR- Media, Moscow (2009).

  7. S. V. Okovityi, D. S. Sukhanov, V. A. Zaplutanov, and A. N. Smagina, Klin. Med., 90(9), 69 – 74 (2012).

    Google Scholar 

  8. L. D. Lukianova, Patol. Fiziol. Eksp. Ter., No. 1, 3 – 19 (2011).

  9. M. N. Kondrashova, Vopr. Biol. Med. i Farm. Khimii, No. 1, 7 – 12 (2002).

  10. C. C. Blad, C. Tang, and S. Offermanns, Nat. Rev. Drug Discov., 11(8), 603 – 619 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. T. T. Chen, E. I. Maevsky, and M. L. Uchitel, Front. Endocrinol. (Lausanne), 6(7), 1 – 11 (2015).

  12. J. Peti-Peterdi, H. Gevorgyan, L. Lam, and A. Riquier-Brison, Pflügers Arch. Eur. J. Physiol., 465(1), 53 – 58 (2013).

    Article  CAS  Google Scholar 

  13. I. Toma, J. J. Kang, A. Sipos, et al., J. Clin. Investig., 18(7), 2526 – 2534 (2008).

    Google Scholar 

  14. J. Peti-Peterdi, Kidney Int., 78(12), 1214 – 1217 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. S. Tonack, C. Tang, and S. Offermanns, Am. J. Physiol., 304(4), 501 – 513 (2012).

    Google Scholar 

  16. P. R. Correa, E. A. Kruglov, M. Thompson, et al., J. Hepatol., 47(2), 262 – 269 (2007).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. C. J. Aguiar, J. A. Rocha-Franco, P. A. Sousa, et al., Cell Commun. Signal., 12(78), 1 – 17 (2014).

    Google Scholar 

  18. L. Yang, D. Yu, H. H. Fan, et al., Int. J. Clin. Experim. Pathol., 7(9), 5414 – 5428 (2014).

    Google Scholar 

  19. K. R. Feingold, A. Moser, J. K. Shigenaga, and C. Grunfeld, J. Lipid Res., 55(12), 2501 – 2508 (2014).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. C. Högberg, O. Gidlof, C. Tan, et al., J. Thromb. Haemostasis, 9(2), 361 – 372 (2009).

    Article  Google Scholar 

  21. R. Bomprezzi, Ther. Adv. Neurol. Disorders, 8(1), 20 – 30 (2015).

    Article  Google Scholar 

  22. T. Rubic, G. Lametschwandtner, S. Jost, et al., Nature Immunol., 9(11), 1261 – 1269 (2008).

    Article  CAS  Google Scholar 

  23. P. A. Burns and D. J. Wilson, Angiogenesis, 6(1), 73 – 77 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. A. Naldini and F. Carraro, Curr. Drug Targets Inflamm. Allergy, 4(1), 3 – 8 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. S. Favret, F. Binet, E. Lapalme, et al., Aging, 5(6), 427 – 444 (2013).

    PubMed Central  CAS  PubMed  Google Scholar 

  26. J. C. Rivera, P. Sapieha, J. S. Joyal, et al., Neonatology, 100(4), 343 – 353 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. D. Hamel, M. Sanchez, F. Duhamel, et al., Arterioscler. Thromb. Vasc. Biol., 34(2), 285 – 293 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. T. H. Adair, W. J. Gay, and J. P. Montani, Am. J. Physiol., 259(3), 393 – 404 (1990).

    Google Scholar 

  29. C. Roehrs, E. R. Garrido-Sanabria, A. C. Da Silva, et al., Neuroscience, 125(4), 964 – 971 (2004).

    Article  Google Scholar 

  30. H. Taniguchi, C. Anacker, O. Wang, and K. Andresson, Exp. Neurol., 255, 30 – 37 (2014).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. J. Peti-Peterdi, J. Clin. Investig., 123(7), 2788 – 2790 (2013).

    Article  CAS  Google Scholar 

  32. E. B. Shustov and S. V. Okovityi, Biomeditsina, No. 2, 15 – 29 (2015).

  33. T. Molnár, A. Dobolyi, G. Nyitrai, et al., BMC Neuroscience, 12(96), 1 – 17 (2011).

    Google Scholar 

  34. Z. M. Nawab, J. T. Daugirdas, T. S. Ing, et al., Trans Am. Soc. Artif. Intern. Organs, 30, 184 – 188 (1984).

    CAS  PubMed  Google Scholar 

  35. T. Molnár, K. Antal, G. Nyitrai, and Z. Emri, Neuroscience, 162(2), 268 – 281 (2009).

    Article  PubMed  Google Scholar 

  36. T. Molnár, P. Barabas, L. Heja, et al., Neurosci. Res., 86(7), 1566 – 1576 (2008).

    Article  Google Scholar 

  37. T. Molnár, J. Visy, A. Simon, et al., Bioorgan. Med. Chem. Lett., 18, No. 23, 6290 – 6292 (2008).

    Article  Google Scholar 

  38. T. Molnár, E. K. Fekete, J. Kardos, et al., Neurosci. Res., 84(1), 27 – 36 (2006).

    Article  Google Scholar 

  39. M. Gahr, B. J. Connemann, C. J. Schonfeldt-Lecuona, and R. W. Freudenmann, Fortschritte Neurologie-Psychiatrie, 81(3), 154 – 161 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 49, No. 9, pp. 3 – 7, September, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okovityi, S.V., Rad’ko, S.V. & Shustov, E.B. Succinate Receptors (SUCNR1) as a Potential Target for Pharmacotherapy. Pharm Chem J 49, 573–577 (2015). https://doi.org/10.1007/s11094-015-1331-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-015-1331-8

Keywords

Navigation