Pharmaceutical Chemistry Journal

, Volume 48, Issue 9, pp 582–586 | Cite as

Computerized Prediction, Synthesis, and Antimicrobial Activity of New Amino-Acid Derivatives of 2-Chloro-N-(9,10-Dioxo-9,10-Dihydroanthracen-1-Yl)Acetamide

  • V. I. Zvarich
  • M. V. Stasevich
  • O. V. Stan’ko
  • E. Z. Komarovskaya-Porokhnyavets
  • V. V. Poroikov
  • A. V. Rudik
  • A. A. Lagunin
  • M. V. Vovk
  • V. P. Novikov
Article

Interaction of 2-chloro-N-(9,10-dioxo-9,10-dihydroanthracen-1-yl)acetamide with α-, β- and ω-amino acids was used to synthesize new amino-acid derivatives of 9,10-anthraquinone. Experimental testing of the antimicrobial actions of the compounds synthesized demonstrated antibacterial activity against Mycobacterium luteum and antifungal activity against Aspergillus niger and Candida tenuis. These results from experimental testing of biological activity are consistent with results obtained by predictions using the computer program PASS. The prediction identified the need for further study of the antitumor and antioxidant actions of the newly synthesized amino acid derivatives.

Keywords

amino acids 9,10-anthraquinone in silico prediction in vitro studies antimicrobial activity 

References

  1. 1.
    L. Delmulle and K. Demeyer, Anthraquinones in Plants: Source, Safety, and Applications in Gastrointestinal Health, Nottingham University Press (2010).Google Scholar
  2. 2.
    V. Ya. Fain, 9,10-Anthraquinones and their Uses [in Russian], Photochemistry Center, Russian Academy of Sciences, Moscow (1999).Google Scholar
  3. 3.
    J. Jones and S. Pope, Dalton Trans., 39, 8421 – 8425 (2009).PubMedCrossRefGoogle Scholar
  4. 4.
    M. Andrews, J. Jones, L. Harding, and S. Pope, Chem. Commun., 47, 206 – 208 (2011).CrossRefGoogle Scholar
  5. 5.
    K. Kuljit and K. Subodh, Tetrahedron, 66(34), 6990 – 7000 (2010).CrossRefGoogle Scholar
  6. 6.
    W. Shu-Pao, D. Kun-Ju, and S. Yi-Ming, Dalton Trans., 39, 4363 – 4368 (2010).CrossRefGoogle Scholar
  7. 7.
    M. S. Sokolova, T. I. Lavrikova, L. M. Gornostaev, Russ. J. Organ. Chem., 43(4), 625 – 627 (2007).CrossRefGoogle Scholar
  8. 8.
    L. Bengt, Acta Chem. Scand., 6, 64 – 72 (1952).CrossRefGoogle Scholar
  9. 9.
    H. de Diesbach and A. Miserez, Helv. Chim. Acta, 31(3), 673 – 677 (1948).CrossRefGoogle Scholar
  10. 10.
    A. Sadym, A. Lagunin, D. Filimonov, and V. Paroikov, SAR and QSAR in Environmental Research, 14(5 – 6), 339 – 347 (2003).PubMedCrossRefGoogle Scholar
  11. 11.
    http: // www.way2drug.com / passonline.
  12. 12.
    D. A. Filimonov and V. V. Poroikov, in: Chemoinformatics Approaches to Virtual Screening, A. Varnet and A. Tropsha (eds.) RSC publishing, Cambridge (2008), pp. 182 – 216.Google Scholar
  13. 13.
    A. S. Labinskaya, Microbiology with Techniques for Microbiological Studies [in Russian], Meditsina, Moscow (1972), pp. 91 – 93.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • V. I. Zvarich
    • 1
  • M. V. Stasevich
    • 1
  • O. V. Stan’ko
    • 1
  • E. Z. Komarovskaya-Porokhnyavets
    • 1
  • V. V. Poroikov
    • 2
  • A. V. Rudik
    • 2
  • A. A. Lagunin
    • 2
  • M. V. Vovk
    • 3
  • V. P. Novikov
    • 1
  1. 1.L’vov Polytechnic National UniversityL’vov-13Ukraine
  2. 2.V. N. Orekhovich Science Research Institute of Biomedical ChemistryRussian Academy of Medical SciencesMoscowRussia
  3. 3.Institute of Organic ChemistryUkrainian National Academy of SciencesKiev-94Ukraine

Personalised recommendations