Skip to main content
Log in

Topical Quercetin Nanoemulsions: Optimization of Preparation Using Chemometric Approaches

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

An Erratum to this article was published on 09 January 2015

In this study, a chemometrics approach has been used to optimize the particle size of quercetin-containing nanoemulsions prepared with spontaneous emulsification method. The experiments were performed according to the Box – Behnken experimental design, one of the most suitable experimental designs for modeling studies. The effect of three experimental parameters on the droplet size was studied using multivariate analysis. The factors studied (and their variation levels) were the concentration of lecithin in aqueous phase (0.7 – 2% w/w), the concentration of tween-80 in aqueous phase (2 – 8% w/w), and sonication time (10 – 60 minutes). In each step of experimental design, the aqueous phase was added to the organic phase including lecithin, tween-80, and quercetin in ethanol solvent. Then, the mixture was treated in ultrasonic bath for 15 min and organic solvent was removed by rotary evaporator. The droplet size was measured by a Zetasizer instrument. After determining the average particle size for each experimental run according to experimental design, modeling of this parameter was conducted in terms of experimental factors by using multiple linear regressions with SPSS software. The obtained regression model was characterized by both its descriptive and predictive ability (R 2 =0.999, standard error SE =4.205, and F =245.698) and allowed the preparation of quercetin nanoemulsions in a desired range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. L. Van Hoff, D. A. Van den Berghe, G. M. Hatfield, et al., Planta Med., 6, 513 – 517 (1984).

    Article  Google Scholar 

  2. T. N. Kaul, E. Middleton Jr., and P. L. Ogra, J. Med. Virol., 15, 71 – 79 (1985).

    Article  CAS  PubMed  Google Scholar 

  3. J. V. Formica and W. Regelson, Food Chem. Toxicol., 33, 1061 – 1080 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. S. Y. Lyu, J. Y. Rhim, and W. B. Park, Arch. Pharm. Res., 28, 1293 – 1301 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. M. T. H. Khan, A. Ather, K. D. Thompson, et al., Antiviral Res., 67, 107 – 119 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. R. G. Kelmann, G. Kuminek, H. F. Teixeira, et al., Int. J. Pharm., 342, 231 – 239 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Z. Fiume, Int. J. Toxicol., 20, 21 – 45 (2001).

    CAS  PubMed  Google Scholar 

  8. D. Paolino, C. A. Ventura, S. Nistico, et al., Int. J. Pharm., 244, 21 – 31 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. M. P. Y. Piemi, D. Korner, S. Benita, et al., J. Control Release, 58, 177 – 187 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. C. Fernandez, G. Marti-Mestres, J. Ramos, et al., J. Pharm. Biomed. Anal., 24, 155 – 165 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Th. F. Tadros, in Encyclopedia of Emulsion Technology, P. Becher (ed.), Marcel Dekker, New York (1983), Vol. 1, pp. 129 – 285.

    Google Scholar 

  12. S. Tamilvanan and S. Benita, Eur. J. Pharm. Biopharm., 58, 357 – 368 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. K. Bouchemal, S. Briancon, E. Perrier, et al., Int. J. Pharm., 280, 241 – 251 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. S. H. Klag, M. Parnas, and S. Benita, in Emulsions and Nanosuspensions for the Formulation of Poorly Soluble Drugs, R. H. Muller, S. Benita, and B. H. L. Bohm (eds.), Medpharm Scientific Publishers, Stuttgart (1998), pp. 31 – 65.

    Google Scholar 

  15. S. Benita, Biomed. Pharmacother., 53, 193 – 206 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. M. R. Hajmohammadi and P. Ebrahimi, Anal. Chim. Acta, 516, 141 – 148 (2004).

    Article  Google Scholar 

  17. S. L. C. Ferreira, R. E. Bruns, H. S. Ferreira, et al., Anal. Chim. Acta, 597, 179 – 186 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. G. E. P. Box, D. W. Behnken, Technometrics, 2, 195 (1960).

    Article  Google Scholar 

  19. B. Abismail, J. P. Canselier, A. M. Wilhelm, et al., Ultrason. Sonochem. 6 (1 – 2), 75 – 83 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. S. Freitas, G. Hielscher, H. P. Merkle, et al., Ultrason. Sonochem., 13(1), 76 – 85 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. S. M. Jafari, Y. He, and B. Bhandari, J. Food Eng., 82(4), 478 – 488 (2007).

    Article  Google Scholar 

  22. Y. F. Maa and C. C. Hsu, Pharm. Dev. Tech., 4(2), 233 – 240 (1998).

    Article  Google Scholar 

  23. S. G. Gaikwad and A. B. Pandit, Ultrason. Sonochem., 15, 554–563 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. J. T. Davies and D. A. Haydon, An Investigation of Droplet Oscillation during Mass Transfer. II. A Dynamical Investigation of Oscillating Spherical Droplets, Proceedings of the 2nd Int. Congr. On Surface Activity (London, 1957), Vol. 1, p. 417.

  25. D. Z. Becher, Encyclopedia of Emulsion Technology, Marcel Dekker, New York (1985), Vol. 2.

    Google Scholar 

  26. C. A. Miller, Spontaneous Emulsification Produced by Diffusion—A Review, Colloids Surf., 29, 89 – 102 (1988).

    Article  CAS  Google Scholar 

  27. M. S. El-Aasser, C. D. Lack, J. W. Van der Hoff, et al., Colloids Surf., 29, 103 – 118 (1986).

    Article  Google Scholar 

  28. C. W. Pouton, Adv. Drug Deliv. Rev., 25, 47 – 58 (1997).

    Article  CAS  Google Scholar 

  29. Y. Kawashima, H. Yamamoto, H. Takeuchi, et al., Eur. J. Pharm. Biopharm., 45, 41 – 48 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. I. E. Frank and R. Todeschini, The Data Analysis Handbook, Elsevier, Amsterdam (1994).

    Google Scholar 

  31. E. Yilmaz and H. H. Borchert, Eur. J. Pharm. Biopharm., 60, 91 – 98 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. B. Deminiere, in Modern Aspects of Emulsion Science, B. P. Brinks (ed.), The Royal Society of Chemistry, Cambridge, UK (1998), pp. 261 – 291.

    Chapter  Google Scholar 

  33. P. Taylor, Colloid Surf. A: Phys. Eng. Aspects, 99, 175 – 185 (1995).

    Article  CAS  Google Scholar 

  34. I. M. Lisfshitz and V. V. Slezov, J. Phys. Chem. Solids, 19, 35 (1961).

    Article  Google Scholar 

  35. C. Wagner, Z. Elektrochem., 65, 581 (1961).

    CAS  Google Scholar 

  36. A. S. Kalvanov and E. D. Shchuckin, Adv. Colloid Interface Sci., 38, 69 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pouneh Ebrahimi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi, P., Salmanpour, S. Topical Quercetin Nanoemulsions: Optimization of Preparation Using Chemometric Approaches. Pharm Chem J 48, 402–407 (2014). https://doi.org/10.1007/s11094-014-1120-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-014-1120-9

Keywords

Navigation