Pharmaceutical Chemistry Journal

, Volume 45, Issue 10, pp 605–611 | Cite as

Nootropic action of some antihypertensive drugs: computer predicting and experimental testing

  • S. A. Kryzhanovskii
  • R. M. Salimov
  • A. A. Lagunin
  • D. A. Filimonov
  • T. A. Gloriozova
  • V. V. Poroikov
Article

Several antihypertensive drugs belonging to the group of ACE inhibitors have been selected for testing their nootropic activity based on a computer-aided prediction of their biological activity spectra using the PASS computer program package. Experiments were conducted on mice by the spontaneous orientation test (patrolling behavior) in a cross-maze. It was found that perindopril at a dose of 1 mg/kg in addition to quinapril and monopril at a dose of 10 mg/kg improved the patrolling behavior in the cross-maze test. This effect is similar to the effects of the standard nootropic drugs piracetam and meclofenoxate (at doses of 300 and 120 mg/kg, respectively). The observed nootropic effect of some ACE inhibitors is likely to be unrelated to their antihypertensive effect since the nootropic action took place only at relatively low doses of perindopril, quinapril, and monopril and was not observed with further increase of the dose. The identification of nootropic action of antihypertensive drugs that are commonly used in clinical practice leads to their new clinical applications with allowance for the relevant idiosyncrasies of patients.

Key words

drug repurposing computer-aided prediction of activity (PASS) antihypertensive drugs nootropic action 

References

  1. 1.
    Chem. Eng. News, 83, No. 25, 132 (2005).Google Scholar
  2. 2.
    C. G. Wermuth, Med. Chem. Res., No. 10, 431–439 (2001).Google Scholar
  3. 3.
    C. G. Wermuth, J. Med. Chem., 47(6), 1303–1314 (2004).PubMedCrossRefGoogle Scholar
  4. 4.
    V. V. Poroikov, D. A. Filimonov, A. V. Stepanchikova, et al., Khim.-farm. Zh., 30(9), 20–23 (1996).Google Scholar
  5. 5.
    V. V. Poroikov, Khim. Ross., No. 2, 8–12 (1999).Google Scholar
  6. 6.
    V. V. Poroikov and D. A. Filimonov, J. Comput.-Aided Mol. Des., 16(11), 819–824 (2002).PubMedCrossRefGoogle Scholar
  7. 7.
    V. Poroikov, D. Akimov, E. Shabelnikova, et al., SAR QSAR Environ. Res., 12(4), 327–344 (2001).PubMedCrossRefGoogle Scholar
  8. 8.
    D. Filimonov, V. Poroikov, Yu. Borodina, et al., J. Chem. Inf. Comput. Sci., 39(4), 666–670 (1999).CrossRefGoogle Scholar
  9. 9.
    V. V. Poroikov, D. A. Filimonov, Yu. V. Borodina, et al., J. Chem. Inf. Comput. Sci., 40(6), 1349–1355 (2000).PubMedCrossRefGoogle Scholar
  10. 10.
    D. A. Filimonov and V. V. Poroikov, in: Chemoinformatics Approaches to Virtual Screening, A. Varnek and A. Tropsha (eds.), RSC Publishing, Cambridge, UK (2008), pp. 182–216.Google Scholar
  11. 11.
  12. 12.
    A. Sadym, A. Lagunin, D. Filimonov, et al., SAR QSAR Environ. Res., 14, No. 5–6, 339–347 (2003).PubMedCrossRefGoogle Scholar
  13. 13.
    A. V. Sadym, A. A. Lagunin, D. A. Filimonov, et al., Khim.-farm. Zh., 36, No. 10, 21–26 (2002).Google Scholar
  14. 14.
    C. Di Giorgio, F. Delmas, E. Ollivier, et al., Exp. Parasiol., 106(3–4), 67–74 (2004).CrossRefGoogle Scholar
  15. 15.
    R. K. Goel, V. Kumar, and M. P. Mahajan, Bioorg. Med. Chem. Lett., 15(8), 2145–2148 (2005).PubMedCrossRefGoogle Scholar
  16. 16.
    A. Geronikaki, J. Dearden, D. Filimonov, et al., J. Med. Chem., 47(11), 2870–2876 (2004).PubMedCrossRefGoogle Scholar
  17. 17.
    A. Geronikaki, D. Druzhilovsky, A. Zakharov, et al., SAR QSAR Environ. Res., 19(1–2), 27–38 (2008).PubMedCrossRefGoogle Scholar
  18. 18.
    R. M. Salimov, Zh. Vyssh. Nervn. Deyat. im. I. P. Pavlova, 38(3), 569–571 (1988).Google Scholar
  19. 19.
    R. M. Salimov, W. J. McBride, J. D. Sinclair, et al., Addict. Biol., 1(3), 273–280 (1996).PubMedCrossRefGoogle Scholar
  20. 20.
    N. V. Markina, R. M. Salimov, and I. I. Poletaeva, Prog. Neuro-Psychopharmacol. Biol. Psychiatry, 28(3), 583–589 (2004).CrossRefGoogle Scholar
  21. 21.
    R. M. Salimov, Alcohol, 17(2), 157–162 (1999).PubMedCrossRefGoogle Scholar
  22. 22.
    R. Salimov, N. Salimova, L. Shvets, et al., Pharmacol. Biochem. Behav., 52(3), 637–640 (1995).PubMedCrossRefGoogle Scholar
  23. 23.
    P. M. Visscher, M. Tynan, M. C. Whiteman, et al., Neurosci. Lett., 347(3), 175–178 (2003).PubMedCrossRefGoogle Scholar
  24. 24.
    A. G. Yip, C. Brayne, D. Easton, et al., J. Med. Genet., 39(9), 403–406 (2002).PubMedCrossRefGoogle Scholar
  25. 25.
    G. Zuccala, G. Onder, E. Marzetti, et al., Eur. Heart J., 26(3), 226–233 (2005).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  • S. A. Kryzhanovskii
    • 1
  • R. M. Salimov
    • 1
  • A. A. Lagunin
    • 2
  • D. A. Filimonov
    • 2
  • T. A. Gloriozova
    • 2
  • V. V. Poroikov
    • 2
  1. 1.Zakusov State Institute of PharmacologyRussian Academy of Medical SciencesMoscowRussia
  2. 2.Orekhovich Institute of Biomedical ChemistryRussian Academy of Medical SciencesMoscowRussia

Personalised recommendations