Skip to main content
Log in

Spectrofluorimetric and spectrophotometric determination of rosiglitazone maleate in pharmaceutical preparations and biological fluids

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

Two simple, sensitive and specific methods were developed for the determination of rosiglitazone maleate (ROZ) in pure form, pharmaceutical preparations, and biological fluids. Method I (spectrophotometry) is based on complex formation of (ROZ) with both copper(II) chloride, and aluminum (III) chloride in borate buffer (pH 6.5). The absorbance of the formed complexes was measured at 318 nm. The absorbance- concentration plots were rectilinear over the concentration range of 8 – 80 and 5 – 70 μg/ml, with detection limits of 1.98 and 1.32 μg/ml for Cu(II) and Al(III), respectively. Method II is based on the spectrofluorimetric determination of ROZ through complex formation with Al+3 in acetate buffer of pH 5. The relative fluorescence intensity of the formed complex was twice that of the native fluorescence of the drug and was measured at 376 nm after excitation at 318 nm. The fluorescence intensity – concentration plot was rectilinear over the concentration range of 0.03 – 2.0 μg/ml with minimum quantification limit (LOQ) of 0.02 μg/ml and minimum limit of detection (LOD) of 0.01 μg/ml. The factors affecting the complex formation in both methods (I and II) were carefully studied and optimized. Both methods were applied for the determination of ROZ in its tablets. The results obtained were in good agreement with those obtained by the comparison method. Furthermore, method II was applied for the determination of ROZ in spiked and real human plasma, and the mean % recoveries (n = 4) were 97.54 ±0.56, and 97.38±0.93 respectively. The stability of the formed complexes in both methods was studied, and the proposed methods were found to be stability indicating ones. The composition of these complexes as well as their stability constants was also investigated. Moreover, the methods were utilized to investigate the kinetics of alkaline, acidic, and oxidative induced photodegradation of the drug. The apparent first-order rate constant and halflife of the photodegradation products were calculated. Reaction pathways were postulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A. Balfour, G. L. Plosker, Rosiglitazone. Drugs, 57, 921 (1999).

    Article  CAS  Google Scholar 

  2. B. Jamali, I. Bjørnsdottir, O. Nordfang, S. H. Hansen, J. Pharm. Biomed. Anal., 46, 82 – 87 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. C. Giaginis, S. Theocharis, A. Tsantili-Kakoulidou, J. Chrom. B, 857, 181 – 187 (2007).

    Article  CAS  Google Scholar 

  4. M. Wang, I. R. Miksa, J. Chrom. B, 856, 318– 3 27 (2007).

    Google Scholar 

  5. J. He, Y. F. Hu, L. F. Duan, et al., J. Pharm. Biomed. Anal., 43, 580 – 585 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. P. Venkatesh, T. Harisudhan, H. Choudhury, et al., Biomed. Chromatogr., 20, 1043 – 1048 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. P. Gomes, J. Sippel, A. Jablonski, M. Steppe, J. Pharm. Biomed. Anal., 36, 909 – 913 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. E. N. Ho, K. C. Yiu, T. S. Wan, et al., J. Chromatogr. B, Anal. Technol. Biomed. Life Sci., 811, 65 – 73 (2004).

    CAS  Google Scholar 

  9. K. A. Kim, J. Y. Park, Biomed. Chromatogr., 18, 613 – 615 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. M. W. Hruska, R. F. Frye, J. Chromatogr. B, Anal. Technol. Biomed. Life Sci., 803, 317 – 320(2004).

    Article  CAS  Google Scholar 

  11. B. L. Kolte, B. B. Raut, A. A. Deo, et al., J. Chromatogr. Sci., 42, 70 – 73 (2004).

    CAS  PubMed  Google Scholar 

  12. Z. J. Lin, D. Desai-Krieger, L. Shum, J. Chromatogr. B, Anal. Technol. Biomed. Life Sci., 801, 265 – 272 (2004).

    Article  CAS  Google Scholar 

  13. R. N. Mamidi, B. Benjamin, M. Ramesh, N. R. Srinivas, Biomed. Chromatogr., 17, 417 – 420 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. B. L. Kolte, B. B. Raut, A. A. Deo, et al., J. Chromatogr. B, Anal. Technol. Biomed. Life Sci., 788, 37 – 44 (2003).

    CAS  Google Scholar 

  15. R. N. Mamidi, M. R. Chaluvadi, B. Benjamin, et al., Arzneimittelforschung, 52, 560 – 564 (2002).

    CAS  PubMed  Google Scholar 

  16. A. M. Muxlow, S. Fowles, P. Russell, J. Chromatogr. B, 752, 77 – 84 (2001).

    Article  CAS  Google Scholar 

  17. P. Gomes, M. Steppe, J. AOAC Int., 89, 1296 – 1299 (2006).

    CAS  PubMed  Google Scholar 

  18. H. Salem, Anal. Chim. Acta, 515, 333– 3 41 (2004).

  19. A. A. M. Moustafa, J. Pharm. Biomed. Anal., 22, 45 – 58 (2000).

    Article  CAS  Google Scholar 

  20. H. E. Abdellatef, Spectrochim. Acta, Part A, 66, 701 – 706 (2007).

    Article  Google Scholar 

  21. A. Gölcü, C. Yücesoy, S. Serin, Il Farmaco, 59, 487 – 492 (2004).

    Article  PubMed  Google Scholar 

  22. S. Emara, A. El-Gindy, A. N. El-Shorbagi, G. Hadad, Anal. Chim. Acta, 489, 115 – 123 (2003).

    Article  CAS  Google Scholar 

  23. M. S. Garcia, M. I. Albero, C. Sánchez-Pedreño, M. S. Abuherba, J. Pharm. Biomed. Anal., 32, 1003 – 1010 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. G. Alpdoan, S. Sungur, Spectrochim. Acta, 55, 2705 – 2709 (1999).

    Article  Google Scholar 

  25. R. Bilewicz, E. Muszalska, J. Elec. Anal. Chem., 300, 147 – 157 (1991).

    Article  CAS  Google Scholar 

  26. R. S. Sathish, A. G. Raju, G. N. Rao, C. Janardhana, Spectrochim. Acta A Mol. Biomol. Spectrosc., 69, 282 – 285 (2008).

    Article  Google Scholar 

  27. S. Sathish, G. Narayan, N. Rao, C. Janardhana, J. Fluoresc., 17, 1 – 5 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. N. El-Enany, J. AOAC Int., 90, 948 – 956 (2007).

    CAS  PubMed  Google Scholar 

  29. I. D. Merás, A. M. de la Peña, F. S. López, Analyst, 125, 1471 – 1476 (2000).

    Article  Google Scholar 

  30. P. T. Djurdjevic, M. J. Stankov, D. Stankov, Anal. Chim. Acta, 300, 253 – 259 (1995).

    Article  CAS  Google Scholar 

  31. T. Pérez-Ruiz, C. Martínez-Lozano, V. Tomás, J. Carpena, Anal. Chim. Acta, 326, 41 – 47 (1996).

    Article  Google Scholar 

  32. The British Pharmacopoeia, The Stationary Office: London (2007).

  33. Guidance for Industry; Q2B of Analytical Procedure: Methodology; Int. Conf. on Hormonization (ICH), November (1996); http://www.fda.gov/eder/guidance/1320fnl.

  34. J. C. Miller, J.-N. Miller, Statistics for Analytical Chemistry, Wiley, New York (2005), p. 256.

    Google Scholar 

  35. GlaxoSmithKline, AV: L 19, Prescribing Information; http://www.gskesc.com/news/private/Avandia AVL/gp. I .pdf (accessed March, 2007).

  36. D. T. Sawyer,W. R. Heineman, J. M. Beebe, Chemistry Experiments for Instrumental Methods, Wiley, New York (1984), p. 198 – 200.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. El-Enany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walash, M.I., El-Brashy, A., El-Enany, N. et al. Spectrofluorimetric and spectrophotometric determination of rosiglitazone maleate in pharmaceutical preparations and biological fluids. Pharm Chem J 43, 697–709 (2009). https://doi.org/10.1007/s11094-010-0383-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-010-0383-z

Key words

Navigation