Synthesis and antimicrobial and antifungal activities of cyclopentene β, β'-triketones and their methyl enol ethers

  • O. P. Shestak
  • V. L. Novikov
  • E. A. Martyyas
  • M. M. Anisimov

The natural cyclopentene β, β'-triketone coruscanone B and its methyl enol ether coruscanone A, metabolites of the higher plant Piper coruscans, in addition to 19 of their simple analogs have been synthesized. The antimicrobial activity of the synthesized compounds against Gram-positive (Staphylococcus aureus ATCC 21027) and Gram-negative (Escherichia coli ATCC 15034) bacteria, yeast (Sofale S-04 and Candida albicans KMM455), and fungi (Aspergillus niger KMM4634 and Fusarium oxysporum KMM4639) was studied. The nature and number of substituents at the 4- and 5-positions of the five-membered ring and also the nature of the substituent in the 2-position were found to have a profound effect on the level of activity and the spectrum of antimicrobial action of the tested compounds. Free β, β'ect. It is established that the level of activity and the spectrum of the antimicrobial action of coruscanone A and 2-(1-methoxyethylidene)-4,5-dichlorocyclopent-4-ene-1,3-dione are almost identical to those of the reference drug nitrofungin.

Key words

cyclopentene β, β'-triketones 2-acylcyclopent-4-ene-1,3-diones methyl enol ethers of cyclopentene β, β'-triketones 2-(1'-methoxyethylidene)cyclopent-4-ene-1,3-diones coruscanones A and B Gram-positive and Gram-negative bacteria yeasts fungi antibacterial and antifungal activities. 


  1. 1.
    X.-C. Li, D. Ferreira, M. R. Jacob, et al., J. Am. Chem. Soc., 126, 6872 – 6873 (2004).CrossRefPubMedGoogle Scholar
  2. 2.
    E. I. Hwang, Y. M. Lee, S. M. Lee, et al., Planta Med., 73, 679 – 682 (2007).CrossRefPubMedGoogle Scholar
  3. 3.
    S.-Y. Wang, X.-Y. Lan, J.-H. Xiao, et al., Phytother. Res., 22, 213 – 216 (2008).CrossRefPubMedGoogle Scholar
  4. 4.
    G. Gilardoni, M. Clericuzio, S. Tosi, et al., J. Nat. Prod., 70, 137 – 139 (2007).CrossRefPubMedGoogle Scholar
  5. 5.
    K. S. Babu, X.-C. Li, M. R. Jacob, et al., J. Med. Chem., 49, 7877 – 7886 (2006).CrossRefPubMedGoogle Scholar
  6. 6.
    Y. Aoyama, T. Konoike, A. Kanda, et al., Bioorg. Med. Chem. Lett., 11, 1695 – 1697 (2001).CrossRefPubMedGoogle Scholar
  7. 7.
    H. M. Oh, S. K. Choi, J. M. Lee, et al., Bioorg. Med. Chem., 13, 6182 – 6187 (2005).CrossRefPubMedGoogle Scholar
  8. 8.
    B. S. Min, K. H. Bae, Y. H. Kim, et al., Nat. Prod. Sci., 4, 241 – 244 (1998).Google Scholar
  9. 9.
    O. P. Shestak, V. L. Novikov, and S. I. Stekhova, Khim.-farm. Zh., 33(1), 18 – 21 (1999).Google Scholar
  10. 10.
    S. Forsen, F. Merenyi, and M. Nilsson, Acta Chem. Scand., 18, 1208 – 1221 (1964).CrossRefGoogle Scholar
  11. 11.
    D. V. Berdyshev, V. P. Glazunov, and V. L. Novikov, in: Abstracts of Papers of the VIth All-Russian Scientific Seminar “Chemistry and Medicine” [in Russian], Ufa (2007), pp. 133 – 135.Google Scholar
  12. 12.
    D. V. Berdyshev, Yu. G. Izrailskii, V. L. Novikov, et al., in: Proceedings of the 1st Far-Eastern Intern. Symp. on Life Sciences [in Russian], Vladivostok (2008), pp. 13 – 14.Google Scholar
  13. 13.
    V. L. Novikov, O. P. Shestak, N. N. Balaneva, et al., Izv. Akad. Nauk Latv. SSR, Ser. Khim., No. 6, 718 – 724 (1985).Google Scholar
  14. 14.
    V. L. Novikov, O. P. Shestak, A. V. Kamernitskii, et al., Izv. Akad. Nauk SSSR, Ser. Khim., No. 6, 1390 – 1393 (1980).Google Scholar
  15. 15.
    A. A. Akhrem, F. A. Lakhvich, and N. A. Fil'chenkov, Zh. Org. Khim., No. 15, 2333 – 2337 (1979).Google Scholar
  16. 16.
    E. P. Ivanova, D. V. Nicolau, N. Yumoto, et al., Mar. Biol., 130, 545 – 551 (1998).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  • O. P. Shestak
    • 1
  • V. L. Novikov
    • 1
  • E. A. Martyyas
    • 1
  • M. M. Anisimov
    • 1
  1. 1.Pacific Institute of Bioorganic Chemistry, Far-East BranchRussian Academy of SciencesVladivostok, 1Russia

Personalised recommendations