Skip to main content
Log in

Temperature-Dependent Kinetics of Ozone Production in Oxygen Discharges

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

A Publisher Correction to this article was published on 30 November 2023

This article has been updated

Abstract

Ozone has been widely used for its disinfection properties ever since its efficient production was made possible by plasma discharges. To-date, many experimental and modeling studies have been—and still are—dedicated to further improve the O3 production efficiency. Early on, it became clear that heat has a detrimental effect. Hence, little attention has been paid to the temperature-dependence of the plasma chemistry. However, with the increased use of O2 as (co-)reactant for plasma-based processes at elevated temperatures, this becomes essential. Therefore, we developed a reaction mechanism to study the temperature-dependence of the O2/O3 (plasma) chemistry. Here, we present the experimental validation of this mechanism and an analysis of the different O3 production trends as a function of gas temperature (300–590 K) and discharge power (5–20 W). Through improving key ozone reactions and electron impact dissociation processes, our mechanism could well-predict all experimentally observed trends. Our analysis revealed the importance of the electronic excited states of O2 and how the temperature-dependence of the plasma-based O3 production is highly dependent on the discharge power. Therefore, we believe that this work can contribute to a better understanding of the underlying physicochemical mechanisms of any O2/O3-containing (plasma) process operating at elevated temperatures. Nevertheless, our work also revealed the need for more accurate and comprehensive data with respect to the production and consumption of the electronic excited states of O2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of Data and Materials

All data generated or analysed during this study are included in this published article and its supplementary information files.

Change history

References

  1. Prinn RG (2003) The cleansing capacity of the atmosphere. Ann Rev Environ Resour 28:29–57. https://doi.org/10.1146/annurev.energy.28.011503.163425

    Article  Google Scholar 

  2. Kogelschatz U (2003) Dielectric-barrier discharges : their history, discharge physics, and industrial applications. Plasma Chem Plasma Process 23:1–46. https://doi.org/10.1023/A:1022470901385

    Article  CAS  Google Scholar 

  3. Eliasson B, Hirth M, Kogelschatz U (1987) Ozone synthesis from oxygen in dielectric barrier discharges. J Phys D Appl Phys 20:1421–1437. https://doi.org/10.1088/0022-3727/20/11/010

    Article  CAS  Google Scholar 

  4. Zhang X, Lee BJ, Im HG, Cha MS (2016) Ozone production with dielectric barrier discharge: effects of power source and humidity. IEEE Trans Plasma Sci 44:2288–2296. https://doi.org/10.1109/TPS.2016.2601246

    Article  CAS  Google Scholar 

  5. Adamovich I, Agarwal S, Ahedo E et al (2022) The 2022 plasma roadmap: low temperature plasma science and technology. J Phys D Appl Phys 55:373001. https://doi.org/10.1088/1361-6463/ac5e1c

    Article  Google Scholar 

  6. Adamovich I, Baalrud SD, Bogaerts A et al (2017) The 2017 plasma roadmap: low temperature plasma science and technology. J Phys D Appl Phys 50:323001. https://doi.org/10.1088/1361-6463/aa76f5

    Article  CAS  Google Scholar 

  7. Kogelschatz U, Eliasson B, Hirth M (1988) Ozone generation from oxygen and air: discharge physics and reaction mechanisms. Ozone Sci Eng 10:367–377. https://doi.org/10.1080/01919518808552391

    Article  CAS  Google Scholar 

  8. Winter LR, Chen JG (2021) N2 fixation by plasma-activated processes. Joule 5:300–315. https://doi.org/10.1016/j.joule.2020.11.009

    Article  CAS  Google Scholar 

  9. Yi Y, Zhou J, Guo H et al (2013) Safe direct synthesis of high purity H2O2 through a H2/O2 plasma reaction. Angew Chem 125:8604–8607. https://doi.org/10.1002/ange.201304134

    Article  Google Scholar 

  10. Snoeckx R, Bogaerts A (2017) Plasma technology—a novel solution for CO2 conversion? Chem Soc Rev 46:5805–5863. https://doi.org/10.1039/C6CS00066E

    Article  CAS  PubMed  Google Scholar 

  11. Snoeckx R, Heijkers S, Van Wesenbeeck K et al (2016) CO2 conversion in a dielectric barrier discharge plasma: N2 in the mix as a helping hand or problematic impurity? Energy Environ Sci 9:999–1011. https://doi.org/10.1039/C5EE03304G

    Article  CAS  Google Scholar 

  12. Wang W, Snoeckx R, Zhang X et al (2018) Modeling plasma-based CO2 and CH4 conversion in mixtures with N2, O2, and H2O: the bigger plasma chemistry picture. J Phys Chem C 122:8704–8723. https://doi.org/10.1021/acs.jpcc.7b10619

    Article  CAS  Google Scholar 

  13. Zhang X, Cha MS (2015) Partial oxidation of methane in a temperature-controlled dielectric barrier discharge reactor. Proc Combust Inst 35:3447–3454. https://doi.org/10.1016/j.proci.2014.05.089

    Article  CAS  Google Scholar 

  14. Lee DH, Kim KT, Cha MS, Song YH (2007) Optimization scheme of a rotating gliding arc reactor for partial oxidation of methane. Proc Combust Inst 31:3343–3351. https://doi.org/10.1016/j.proci.2006.07.230

    Article  CAS  Google Scholar 

  15. Zhang X, Cha MS (2013) Electron-induced dry reforming of methane in a temperature-controlled dielectric barrier discharge reactor. J Phys D Appl Phys 46:415205. https://doi.org/10.1088/0022-3727/46/41/415205

    Article  CAS  Google Scholar 

  16. Snoeckx R, Aerts R, Tu X, Bogaerts A (2013) Plasma-based dry reforming: a computational study ranging from the nanoseconds to secons time scale. J Phys Chem C 117:4957–4970

    Article  CAS  Google Scholar 

  17. Snoeckx R, Zeng YX, Tu X, Bogaerts A (2015) Plasma-based dry reforming: improving the conversion and energy efficiency in a dielectric barrier discharge. RSC Adv 5:29799–29808. https://doi.org/10.1039/C5RA01100K

    Article  CAS  Google Scholar 

  18. Liu J-L, Snoeckx R, Cha MS (2018) Steam reforming of methane in a temperature-controlled dielectric barrier discharge reactor: the role of electron-induced chemistry versus thermochemistry. J Phys D Appl Phys 51:385201. https://doi.org/10.1088/1361-6463/aad7e7

    Article  CAS  Google Scholar 

  19. Snoeckx R, Wang W, Zhang X et al (2018) Plasma-based multi-reforming for gas-to-liquid: tuning the plasma chemistry towards methanol. Sci Rep 8:15929. https://doi.org/10.1038/s41598-018-34359-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cha MS, Snoeckx R (2022) Plasma technology-preparing for the electrified future. Front Mech Eng 8:1–5. https://doi.org/10.3389/fmech.2022.903379

    Article  Google Scholar 

  21. Ju Y, Sun W (2015) Plasma assisted combustion: dynamics and chemistry. Prog Energy Combust Sci 48:21–83. https://doi.org/10.1016/j.proci.2014.05.021

    Article  CAS  Google Scholar 

  22. Kohse-Höinghaus K (2022) Combustion, chemistry, and carbon neutrality. Chem Rev. https://doi.org/10.1021/acs.chemrev.2c00828

    Article  Google Scholar 

  23. Snoeckx R, Jun D, Lee BJ, Cha MS (2022) Kinetic study of plasma assisted oxidation of H2 for an undiluted lean mixture. Combust Flame 242:112205. https://doi.org/10.1016/j.combustflame.2022.112205

    Article  CAS  Google Scholar 

  24. Snoeckx R, Cha MS (2023) Kinetic study of plasma assisted oxidation of H2 for an undiluted rich mixture. Combust Flame 250:112638. https://doi.org/10.1016/j.combustflame.2023.112638

    Article  CAS  Google Scholar 

  25. Snoeckx R, Cha MS (2021) Inevitable chemical effect of balance gas in low temperature plasma assisted combustion. Combust Flame 225:1–4. https://doi.org/10.1016/j.combustflame.2020.10.028

    Article  CAS  Google Scholar 

  26. Bang S, Snoeckx R, Cha MS (2023) Kinetic study for plasma assisted cracking of NH3: approaches and challenges. J Phys Chem A 127:1271–1282. https://doi.org/10.1021/acs.jpca.2c06919

    Article  CAS  PubMed  Google Scholar 

  27. Sun W, Gao X, Wu B, Ombrello T (2019) The effect of ozone addition on combustion: kinetics and dynamics. Prog Energy Combust Sci 73:1–25. https://doi.org/10.1016/j.pecs.2019.02.002

    Article  Google Scholar 

  28. Jian J, Hashemi H, Wu H et al (2022) A reaction mechanism for ozone dissociation and reaction with hydrogen at elevated temperature. Fuel 322:124138. https://doi.org/10.1016/j.fuel.2022.124138

    Article  CAS  Google Scholar 

  29. Zhao H, Yang X, Ju Y (2016) Kinetic studies of ozone assisted low temperature oxidation of dimethyl ether in a flow reactor using molecular-beam mass spectrometry. Combust Flame 173:187–194. https://doi.org/10.1016/j.combustflame.2016.08.008

    Article  CAS  Google Scholar 

  30. Vu TM, Won SH, Ombrello T, Cha MS (2014) Stability enhancement of ozone-assisted laminar premixed Bunsen flames in nitrogen co-flow. Combust Flame 161:917–926. https://doi.org/10.1016/j.combustflame.2013.09.023

    Article  CAS  Google Scholar 

  31. Manley TC (1943) The electric characteristics of the ozonator discharge. Trans Electrochem Soc 84:83. https://doi.org/10.1149/1.3071556

    Article  Google Scholar 

  32. Pipa A, Brandenburg R (2019) The equivalent circuit approach for the electrical diagnostics of dielectric barrier discharges: the classical theory and recent developments. Atoms 7:14. https://doi.org/10.3390/atoms7010014

    Article  Google Scholar 

  33. Peeters F, Butterworth T (2019) Electrical diagnostics of dielectric barrier discharges. In: Atmospheric pressure plasma—from diagnostics to applications. IntechOpen, pp 1–27

  34. Pancheshnyi S, Eismann B, Hagelaar GJM, Pitchford LC (2008) ZDPlasKin: a new tool for plasmachemical simulations. Bull Am Phys Soc 53

  35. Pancheshnyi S, Eismann B, Hagelaar GJM, Pitchford LC (2008) Computer code ZDPlasKin

  36. Kee R, Rupley F, Miller J (1989) Chemkin-II: A Fortran chemical kinetics package for the analysis of gas-phase chemical kinetics. Sandia National Labs., Albuquerque, NM, and Livermore, CA (United States)

  37. Hagelaar GJM, Pitchford LC (2005) Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models. Plasma Sour Sci Technol 14:722–733. https://doi.org/10.1088/0963-0252/14/4/011

    Article  CAS  Google Scholar 

  38. Carbone E, Graef W, Hagelaar G et al (2021) Data needs for modeling low-temperature non-equilibrium plasmas: the LXCat project, history, perspectives and a tutorial. Atoms 9:1–40. https://doi.org/10.3390/atoms9010016

    Article  CAS  Google Scholar 

  39. Pitchford LC, Alves LL, Bartschat K et al (2017) LXCat: an open-access, web-based platform for data needed for modeling low temperature plasmas. Plasma Process Polym 14:1–17. https://doi.org/10.1002/ppap.201600098

    Article  CAS  Google Scholar 

  40. Pancheshnyi S, Biagi S, Bordage MC et al (2012) The LXCat project: electron scattering cross sections and swarm parameters for low temperature plasma modeling. Chem Phys 398:148–153. https://doi.org/10.1016/j.chemphys.2011.04.020

    Article  CAS  Google Scholar 

  41. Itikawa Y (2009) Cross sections for electron collisions with oxygen molecules. J Phys Chem Ref Data 38:1–20. https://doi.org/10.1063/1.3025886

    Article  CAS  Google Scholar 

  42. Suzuki D, Kato H, Ohkawa M et al (2011) Electron excitation of the Schumann-Runge continuum, longest band, and second band electronic states in O2. J Chem Phys 134:064311. https://doi.org/10.1063/1.3533442

    Article  CAS  PubMed  Google Scholar 

  43. Alves LL, Coche P, Ridenti MA, Guerra V (2016) Electron scattering cross sections for the modelling of oxygen-containing plasmas*. Eur Phys J D 70:1–9. https://doi.org/10.1140/epjd/e2016-70102-1

    Article  CAS  Google Scholar 

  44. Lawton SA, Phelps AV (1978) Excitation of the b 1Σg+ state of O2 by low energy electrons. J Chem Phys 69:1007–1009. https://doi.org/10.1063/1.436700

    Article  Google Scholar 

  45. Kochetov I TRINITI database. www.lxcat.net/TRINITI

  46. Ionin AA, Kochetov IV, Napartovich AP, Yuryshev NN (2007) Physics and engineering of singlet delta oxygen production in low-temperature plasma. J Phys D Appl Phys 40:R25–R61. https://doi.org/10.1088/0022-3727/40/2/R01

    Article  CAS  Google Scholar 

  47. Alves LL (2014) The IST-LISBON database on LXCat. J Phys Conf Ser 565:012007. https://doi.org/10.1088/1742-6596/565/1/012007

    Article  Google Scholar 

  48. Alves LL IST-Lisbon database. www.lxcat.net/IST-Lisbon

  49. Morgan LW Morgan (Kinema Research Software) database. www.lxcat.net/Morgan

  50. Tsang W, Hampson RF (1986) Chemical kinetic data base for combustion chemistry. Part I. methane and related compounds. J Phys Chem Ref Data 15:1087–1279. https://doi.org/10.1063/1.555759

    Article  CAS  Google Scholar 

  51. Davis DD, Wong W, Lephardt J (1973) A laser flash photo lysis-resonance fluorescence kinetic study: reaction of O(3P) with O3. Chem Phys Lett 22:273–278. https://doi.org/10.1016/0009-2614(73)80091-0

    Article  CAS  Google Scholar 

  52. Jones WM, Davidson N (1962) The thermal decomposition of ozone in a shock tube. J Am Chem Soc 84:2868–2878. https://doi.org/10.1021/ja00874a005

    Article  CAS  Google Scholar 

  53. Hippler H, Rahn R, Troe J (1990) Temperature and pressure dependence of ozone formation rates in the range 1–1000 bar and 90–370 K. J Chem Phys 93:6560–6569. https://doi.org/10.1063/1.458972

    Article  CAS  Google Scholar 

  54. Suzuki S, Rusinov IM, Teranishi K et al (2018) Re-evaluation of rate coefficients for ozone decomposition by oxygen in wide range of gas pressures (20–1000 Torr) and temperatures (293–423 K). J Phys D Appl Phys 51:305201. https://doi.org/10.1088/1361-6463/aacd61

    Article  CAS  Google Scholar 

  55. Dryer FL, Haas FM, Santner J et al (2014) Interpreting chemical kinetics from complex reaction–advection–diffusion systems: modeling of flow reactors and related experiments. Prog Energy Combust Sci 44:19–39. https://doi.org/10.1016/j.pecs.2014.04.002

    Article  Google Scholar 

  56. Zhang YF, Wei LS, Liang X et al (2018) Characteristics of the discharge and ozone generation in oxygen-fed coaxial DBD using an amplitude-modulated AC power supply. Plasma Chem Plasma Process 38:1199–1208. https://doi.org/10.1007/s11090-018-9922-2

    Article  CAS  Google Scholar 

  57. Mundy B, Kuhnel B, Hunter G et al (2018) A review of ozone systems costs for municipal applications. report by the municipal committee–IOA pan American group. Ozone Sci Eng 40:266–274. https://doi.org/10.1080/01919512.2018.1467187

    Article  CAS  Google Scholar 

  58. Capitelli M, Ferreira CM, Gordiets BF, Osipov AI (2000) Plasma kinetics in atmospheric gases. Springer, Berlin Heidelberg

    Book  Google Scholar 

  59. Van GW, Bogaerts A (2013) Kinetic modelling for an atmospheric pressure argon plasma jet in humid air. J Phys D Appl Phys 46:275201. https://doi.org/10.1088/0022-3727/46/27/275201

    Article  CAS  Google Scholar 

  60. Nowak U, Warnatz J (1988) Sensitivity analysis in aliphatic hydrocarbon combustion. dynamics of reactive systems Part I: flames; Part II: heterogeneous combustion and applications. American Institute of Aeronautics and Astronautics, Washington DC, pp 87–103

    Google Scholar 

  61. Turányi T (1997) Applications of sensitivity analysis to combustion chemistry. Reliab Eng Syst Saf 57:41–48. https://doi.org/10.1016/S0951-8320(97)00016-1

    Article  Google Scholar 

  62. Tejero-del-Caz A, Guerra V, Gonçalves D et al (2019) The LisbOn KInetics Boltzmann solver. Plasma Sources Sci Technol 28:043001. https://doi.org/10.1088/1361-6595/ab0537

    Article  CAS  Google Scholar 

  63. Alves LL, Bartschat K, Biagi SF et al (2013) Comparisons of sets of electron–neutral scattering cross sections and swarm parameters in noble gases: II. Helium and neon. J Phys D Appl Phys 46:334002. https://doi.org/10.1088/0022-3727/46/33/334002

    Article  CAS  Google Scholar 

  64. Eliasson B, Kogelschatz U (1986) Electron impact dissociation in oxygen. J Phys B At Mol Phys 19:1241–1247. https://doi.org/10.1088/0022-3700/19/8/018

    Article  CAS  Google Scholar 

  65. Wakiya K (1978) Differential and integral cross sections for the electron impact excitation of O2. I. Optically allowed transitions from the ground state. J Phys B At Mol Phys 11:3913–3930. https://doi.org/10.1088/0022-3700/11/22/019

    Article  CAS  Google Scholar 

  66. Wakiya K (1978) Differential and integral cross sections for the electron impact excitation of O2. II. Optically forbidden transitions from the ground state. J Phys B At Mol Phys 11:3931–3938. https://doi.org/10.1088/0022-3700/11/22/020

    Article  CAS  Google Scholar 

  67. LeClair LR, McConkey JW (1993) Selective detection of O(1S0) following electron impact dissociation of O2 and N2O using a XeO* conversion technique. J Chem Phys 99:4566–4577. https://doi.org/10.1063/1.466056

    Article  CAS  Google Scholar 

  68. Cosby PC (1993) Electron-impact dissociation of oxygen. J Chem Phys 98:9560–9569. https://doi.org/10.1063/1.464387

    Article  CAS  Google Scholar 

  69. Shyn TW, Sweeney CJ, Grafe A (1994) Differential excitation cross sections of molecular oxygen by electron impact: the longest and second bands. Phys Rev A 49:3680–3684. https://doi.org/10.1103/PhysRevA.49.3680

    Article  CAS  PubMed  Google Scholar 

  70. Trajmar S, Williams W, Kuppermann A (1972) Angular dependence of electron impact excitation cross sections of O2. J Chem Phys 56:3759–3765. https://doi.org/10.1063/1.1677774

    Article  CAS  Google Scholar 

  71. Smith ALS, Austin JM (1976) Dynamic mass spectrometry. Heyden

    Google Scholar 

  72. Jones DB, Campbell L, Bottema MJ et al (2006) Electron-driven excitation of O2 under night-time auroral conditions: excited state densities and band emissions. Planet Space Sci 54:45–59. https://doi.org/10.1016/j.pss.2005.08.007

    Article  Google Scholar 

Download references

Acknowledgements

The research reported in this work was funded by King Abdullah University of Science and Technology (KAUST) under award number BAS/1/1384-01-01.

Funding

The research reported in this work was funded by King Abdullah University of Science and Technology (KAUST) under award number BAS/1/1384-01-01.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and Methodology: RS; Investigation: SB; Formal analysis and Visualization: SB, RS; Writing—original draft preparation: RS, SB; Writing—review and editing: RS, MSC, SB; Funding acquisition and Resources: MSC.

Corresponding author

Correspondence to Ramses Snoeckx.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The incorrect Supplementary file 4 was published; it has now been replaced with the correct file.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bang, S., Snoeckx, R. & Cha, M.S. Temperature-Dependent Kinetics of Ozone Production in Oxygen Discharges. Plasma Chem Plasma Process 43, 1453–1472 (2023). https://doi.org/10.1007/s11090-023-10370-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-023-10370-7

Keywords

Navigation