Skip to main content
Log in

Effect of Intermittent Injection of Ar/CH4 Quenching Gas on Particle Composition and Size of Si/C Nanoparticles Synthesized by Modulated Induction Thermal Plasma

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript


This paper describes effects of intermittent Ar/CH4 quenching gas (QG) injection on the size and composition of Si/C nanoparticles synthesized using pulse-modulated induction thermal plasma (PMITP). Time-controlled feeding of feedstock (TCFF), with synchronous and intermittent injection of silicon feedstock powder to the PMITP, was used for high-rate production of Si nanoparticles. Also, Ar QG was supplied intermittently from the chamber wall to enhance the cooling effect further. The QG also included CH4 as a carbon source gas for Si/C nanoparticle synthesis. Intermittent QG injection timing was studied for the composition of Si/C nanoparticles. The synthesized particles were analysed using FE-SEM, XRD, TEM, EDS, and Raman spectroscopy. Furthermore, numerical thermofluid simulation was also conducted to obtain the time varying temperature distribution in the reaction chamber, considering intermittent QG injection. From this numerical calculation, the dependence of the minimum temperature on the QG injection timing was found. The above experimental and numerical results indicate that carbon-coated Si nanoparticles can be synthesized when QG is injected at appropriate timing into the PMITP with temperatures of 1000–2000 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others


  1. Sun L, Su T, Xu L, Du H (2016) Preparation of uniform Si nanoparticles for high-performance Li-ion battery anodes. Phys Chem 18:1521

    CAS  Google Scholar 

  2. Boukamp BA, Lesh GC, Huggins RA (1981) All-solid lithium electrodes with mixed-conductor matrix. J Electrochem Soc 128:725–9

    Article  CAS  Google Scholar 

  3. De Guzman RC, Yang J, Cheng MMC, Salley SO, Simon Ng KY (2013) A silicon nanoparticle/reduced graphene oxide composite anode with excellent nanoparticle dispersion to improve lithium ion battery performance. J Mater Sci 48:4823–33

    Article  Google Scholar 

  4. Kong J, Yee WA, Wei Y, Yang L, Ang JM, Phua SL, Wong SY, Zhou R, Dong Y, Li X, Lu X (2013) Silicon nanoparticles encapsulated in hollow graphitized carbon nanofibers for lithium ion battery anodes. Nanoscale 5:2967–73

    Article  CAS  Google Scholar 

  5. Kambara M, Kitayama A, Homma K, Hideshima T, Kaga M, Sheem K-Y, Ishida S, Yoshida T (2014) Nano-composite Si particle formation by plasma spraying for negative electrode of Li ion batteries. J Appl Phys 115:143302

    Article  Google Scholar 

  6. Su X, Wu Q, Li J, Xiao X, Lott A, Lu W, Sheldon BW, Wu J (2014) Silicon-based nanomaterials for lithium-ion batteries: a review. Adv Energy Mater 4:1300882

    Article  Google Scholar 

  7. Kambara M, Oda N, Homma K (2015) Enhanced cycle capacity retention of plasma-sprayed SiOx nanocomposite powders for negative electrode of lithium ion batteries. Jpn J Appl Phys 54:01AD001AD001AD05

    Article  Google Scholar 

  8. Koo JB, Jang BY, Han KS (2015) Si–C composites synthesized by using Si nanoparticles and carboxymethyl cellulose as anode materials for lithium-ion batteries. J Korean Phys Soc 67:1831–7

    Article  CAS  Google Scholar 

  9. Yue H, Wang S, Yang Z, Li Q, Lin S, He D (2015) Ultra-thick porous films of graphene-encapsulated silicon nanoparticles as flexible anodes for lithium ion batteries. Electrochim Acta 174:688–95

    Article  CAS  Google Scholar 

  10. Sourice J, Quinsac A, Leconte Y, Sublemontier O, Porcher W, Haon C, Bordes A, De Vito E, Boulineau A, Jouanneau S, Larbi S, Herlin-Boime N, Reynaud C (2015) One-step synthesis of Si–C nanoparticles by laser pyrolysis: high-capacity anode material for lithium-ion batteries. ACS Appl Mater Interfaces 7:6637–6644

    Article  CAS  Google Scholar 

  11. Wang L, Gao B, Peng C, Peng X, Fu J, Chu PK, Huo K (2015) Bamboo leaf derived ultrafine Si nanoparticles and Si/C nanocomposites for high-performance Li-ion battery anodes. Nanoscale 7:13840–7

    Article  CAS  Google Scholar 

  12. Kasukabe T, Nishihara H, Iwamura S, Kyotani T (2016) Remarkable performance improvement of inexpensive ball-milled Si nanoparticles by carbon-coating for Li-ion batteries. J Power Sources 319:99–103

    Article  CAS  Google Scholar 

  13. Yan L, Liu J, Wang Q, Sun M, Jiang Z, Liang C, Pan F, Lin Z (2017) In situ wrapping Si nanoparticles with 2D carbon nanosheets as high-areal-capacity anode for lithium-ion batteries. ACS Appl Mater Interfaces 9:38159–38164

    Article  CAS  Google Scholar 

  14. Liu Z, Guo P, Liu B, Xie W, Liu D, He D (2017) Carbon-coated Si nanoparticles/reduced graphene oxide multilayer anchored to nanostructured current collector as lithium-ion battery anode. Appl Surf Sci 396:41–7

    Article  CAS  Google Scholar 

  15. Jeong H, Yo J, Park SK, Park S, Lee JS (2020) High-purity core/shell structured nanoparticles synthesis using high-frequency plasma technology and atomic layer deposition Applied. Vacuum 176:109556

    Article  Google Scholar 

  16. Zhang X, Hayashida R, Tanaka M, Watanabe T (2020) Synthesis of carbon-coated silicon nanoparticles by induction thermal plasma for lithium ion battery. Appl Powder Technol 371:26–36

    Article  CAS  Google Scholar 

  17. Wang D, Zhou C, Cao B, Xu Y, Zhang D, Li A, Zhou J, Ma Z, Chen X, Song H (2020) One-step synthesis of spherical Si/C composites with onion-like buffer structure as high-performance anodes for lithium-ion batteries. Appl Energy Storage Mater 24:312–8

    Article  Google Scholar 

  18. Zhang X, Liu Z, Tanaka M, Watanabe T (2021) Formation mechanism of amorphous silicon nanoparticles with additional counter-flow quenching gas by induction thermal plasma. Chem Eng Sci 230:116217

    Article  CAS  Google Scholar 

  19. Tanaka Y, Tsuke T, Guo W, Uesugi Y, Ishijima T, Watanabe S, Nakamura K (2012) A large amount synthesis of nanopowder using modulated induction thermal plasmas synchronized with intermittent feeding of raw materials. J Phys Conf Ser 406:12001

    Article  Google Scholar 

  20. Kodama N, Tanaka Y, Kita K, Uesugi Y, Ishijima T, Watanabe S, Nakamura K (2014) A method for large-scale synthesis of Al-doped TiO\(_2\) nanopowder using pulse-modulated induction thermal plasmas with time-controlled feedstock feeding. J Phys D Appl Phys 47:195304

    Article  Google Scholar 

  21. Kodama N, Kita K, Tanaka Y, Uesugi Y, Ishijima T, Watanabe S, Nakamura K (2014) Two-dimensional spectroscopic observation of a pulse-modulated induction thermal plasma torch for nanopowder synthesis. J Phys Conf Ser 550:12026

    Article  Google Scholar 

  22. Kodama N, Tanaka Y, Kita K, Ishisaka Y, Uesugi Y, Ishijima T, Sueyasu S, Nakamura K (2016) Fundamental study of Ti feedstock evaporation and the precursor formation process in inductively coupled thermal plasmas during TiO\(_2\) nanopowder synthesis. J Phys D Appl Phys 49:305501

    Article  Google Scholar 

  23. Kodama N, Tanaka Y, Kita K, Ishisaka Y, Uesugi Y, Ishijima T, Sueyasu S, Nakamura K (2017) Spatiotemporal distribution of thermal plasma temperature and precursor formation in a torch during TiO\(_2\) nanopowder synthesis. Plasma Sources Sci Technol 26:75008

    Article  Google Scholar 

  24. Ishisaka Y, Kodama N, Kita K, Tanaka Y, Uesugi Y, Ishijima T, Sueyasu S, Watanabe S, Nakamura K (2017) High-rate synthesis of Si nanowires using modulated induction thermal plasmas. Appl Phys Express 10:96201

    Article  Google Scholar 

  25. Kodama N, Tanaka Y, Ishisaka Y, Shimizu K, Uesugi Y, Ishijima T, Watanabe S, Sueyasu S, Nakamura K (2018) Spatial distribution of Ti vapor admixture ratio in Ar induction thermal plasma torch during Ti feedstock injection. Jpn J Appl Phys 57:36101

    Article  Google Scholar 

  26. Kambara M, Hamazaki S, Kodama N, Tanaka Y (2019) Efficient modification of Si/SiO nanoparticles by pulse-modulated plasma flash evaporation for an improved capacity of lithium-ion storage. J Phys D Appl Phys 52:325502

    Article  CAS  Google Scholar 

  27. Tanaka Y, Shimizu K, Akashi K, Onda K, Uesugi Y, Ishijima T, Watanabe S, Sueyasu S, Nakamura K (2020) High rate synthesis of graphene-encapsulated silicon nanoparticles using pulse-modulated induction thermal plasmas with intermittent feedstock feeding. Jpn J Appl Phys 59:SHHE0

    Google Scholar 

  28. Watanabe T, Okumiya H (2004) Formation mechanism of silicide nanoparticles by induction thermal plasmas. Sci Technol Adv Mater 5:639

    Article  CAS  Google Scholar 

  29. Hata K, Tanaka Y, Nakano Y, Arai T, Uesugi Y, Ishijima T (2019) Polycrystalline diamond film fabrication using modulated inductively coupled thermal plasmas at different pressure conditions. J Appl Phys 126:223302

    Article  Google Scholar 

  30. Kazuki Onda, Yasunori Tanaka, Akashi K, Nakano Y, Ishijima T, Uesugi Y, Sueyasu S, Watanabe S, Nakamura K (2020) Numerical study of evaporation process of feedstock powder under transient states in pulse-modulated induction thermal plasmas for nanoparticle synthesis. J Phys D Appl Phys 53:325201

    Article  Google Scholar 

  31. Onda K, Tanaka Y, Akashi K, Nakano Y, Ishijima T, Uesugi Y, Sueyasu S, Watanabe S, Nakamura K (2020) Numerical thermofluid simulation on tandem type of inductively coupled thermal plasmas with and without current modulation in a lower coil. J Phys D Appl Phys 53:165201

    Article  CAS  Google Scholar 

  32. Siregar Y, Tanaka Y, Uesugi Y, Ishijima T (2019) Influence of input power in Ar/H\(_2\) thermal plasma with silicon powder by numerical simulation. Appl Telkomnika (Telecommun Comput Electron Control) 17(2):1047–1054

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Keita Akashi or Yasunori Tanaka.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akashi, K., Tanaka, Y., Nakano, Y. et al. Effect of Intermittent Injection of Ar/CH4 Quenching Gas on Particle Composition and Size of Si/C Nanoparticles Synthesized by Modulated Induction Thermal Plasma. Plasma Chem Plasma Process 41, 1121–1147 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: