Skip to main content

Amination of Cyclohexane by Dielectric Barrier Discharge Processing in a Continuous Flow Microreactor: Experimental and Simulation Studies

Abstract

A miniaturized flow device has been developed to combine microfluidics technology and plasma process. In this microreactor, atmospheric pressure dielectric barrier discharges are generated in a gas in contact with a liquid phase. This study was conducted with plasma generated in ammonia in contact with a flow of liquid cyclohexane. Cyclohexylamine was synthesized with a good selectivity, and the process can be implemented to improve conversion and effectiveness. Numerical simulations confirmed that NH2 radicals are generated in the plasma and react with cyclohexyls radicals to achieve the reaction, giving a selectivity of 50% and a total molar conversion of 20% of cyclohexane. The effects of voltage and frequency on the selectivity and the experimental conversion rate were studied and discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    Lozano-Parada JH, Zimmerman WB (2010) The role of kinetics in the design of plasma microreactors. Chem Eng Sci 65:4925–4930. https://doi.org/10.1016/j.ces.2010.03.056

    CAS  Article  Google Scholar 

  2. 2.

    Sun H-X, Zhang L, Chai H, Chen H-L (2006) Surface modification of poly(tetrafluoroethylene) films via plasma treatment and graft copolymerization of acrylic acid. Desalination 192:271–279. https://doi.org/10.1016/j.desal.2005.07.038

    CAS  Article  Google Scholar 

  3. 3.

    Carton O, Salem DB, Bhatt S et al (2012) Plasma polymerization of acrylic acid by atmospheric pressure nitrogen plasma jet for biomedical applications. Plasma Processes Polym 9:984–993. https://doi.org/10.1002/ppap.201200044

    CAS  Article  Google Scholar 

  4. 4.

    Liston EM, Martinu L, Wertheimer MR (1993) Plasma surface modification of polymers for improved adhesion: a critical review. J Adhes Sci Technol 7:1091–1127. https://doi.org/10.1163/156856193X00600

    CAS  Article  Google Scholar 

  5. 5.

    Tatoulian M, Brétagnol F, Arefi-Khonsari F et al (2005) Plasma deposition of allylamine on polymer powders in a fluidized bed reactor. Plasma Processes Polym 2:38–44. https://doi.org/10.1002/ppap.200400029

    CAS  Article  Google Scholar 

  6. 6.

    Massines F, Sarra-Bournet C, Fanelli F et al (2012) Atmospheric pressure low temperature direct plasma technology: status and challenges for thin film deposition. Plasma Processes Polym 9:1041–1073. https://doi.org/10.1002/ppap.201200029

    CAS  Article  Google Scholar 

  7. 7.

    Zhang M, Ognier S, Touati N et al (2016) The development and numerical simulation of a plasma microreactor dedicated to chemical synthesis. Green Process Synthesis 6:63–72. https://doi.org/10.1515/gps-2016-0086

    CAS  Article  Google Scholar 

  8. 8.

    Chiang W-H, Richmonds C, Sankaran RM (2010) Continuous-flow, atmospheric-pressure microplasmas: a versatile source for metal nanoparticle synthesis in the gas or liquid phase. Plasma Sour Sci Technol 19:034011. https://doi.org/10.1088/0963-0252/19/3/034011

    CAS  Article  Google Scholar 

  9. 9.

    Sankaran RM (2004) High-pressure microdischarges as microreactors for materials applications. Phd, California Institute of Technology

  10. 10.

    Ishii C, Stauss S, Kuribara K et al (2015) Atmospheric pressure synthesis of diamondoids by plasmas generated inside a microfluidic reactor. Diam Relat Mater 59:40–46. https://doi.org/10.1016/j.diamond.2015.08.017

    CAS  Article  Google Scholar 

  11. 11.

    Baars-hibbe L, Sichler P, Schrader C et al (2003) Micro-structured electrode arrays: atmospheric pressure plasma processes and applications”. Surf. Coatings Technol 174:519–523

    Article  Google Scholar 

  12. 12.

    Sichler P, Büttgenbach S, Baars-Hibbe L et al (2004) A micro plasma reactor for fluorinated waste gas treatment. Chem Eng J 101:465–468. https://doi.org/10.1016/j.cej.2004.01.008

    CAS  Article  Google Scholar 

  13. 13.

    Patinglag L, Sawtell D, Iles A et al (2019) A microfluidic atmospheric-pressure plasma reactor for water treatment. Plasma Chem Plasma Process. https://doi.org/10.1007/s11090-019-09970-z

    Article  Google Scholar 

  14. 14.

    Schelcher G, Guyon C, Ognier S et al (2014) Cyclic olefin copolymer plasma millireactors. Lab Chip 14:3037–3042. https://doi.org/10.1039/c4lc00423j

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Sekiguchi H, Ando M, Kojima H (2005) Study of hydroxylation of benzene and toluene using a micro-DBD plasma reactor. J Phys D Appl Phys 38:1722–1727. https://doi.org/10.1088/0022-3727/38/11/013

    CAS  Article  Google Scholar 

  16. 16.

    Trionfetti C, Aǧıral A, Lefferts L, Seshan K (2008) Oxidative conversion of propane in a microreactor in the presence of plasma over MgO-based catalysts: an experimental study. J Phys Chem C 112:4267–4274. https://doi.org/10.1021/jp710642c

    CAS  Article  Google Scholar 

  17. 17.

    Tatoulian M, OGNIER S, ZHANG M (2015) Réacteur à plasma diphasique gaz/liquide

  18. 18.

    Wengler J, Ognier S, Al Ayoubi S, Tatoulian M (2019) Biphasic plasma microreactor and method of using the same

  19. 19.

    Zhang M, Ognier S, Touati N et al (2018) A plasma/liquid microreactor for radical reaction chemistry: an experimental and numerical investigation by EPR spin trapping. Plasma Processes Polym 15:1700188. https://doi.org/10.1002/ppap.201700188

    CAS  Article  Google Scholar 

  20. 20.

    Wengler J, Ognier S, Zhang M et al (2018) Microfluidic chips for plasma flow chemistry: application to controlled oxidative processes. React Chem Eng 3:930–941. https://doi.org/10.1039/C8RE00122G

    CAS  Article  Google Scholar 

  21. 21.

    Gaudeau M, Zhang M, Tatoulian M et al (2020) Fast carbonylation reaction from CO2 using plasma gas/liquid microreactors for radiolabeling applications. React Chem Eng. https://doi.org/10.1039/D0RE00289E

    Article  Google Scholar 

  22. 22.

    Hayes KS (2001) Industrial processes for manufacturing amines. Appl Catal A 221:187–195. https://doi.org/10.1016/S0926-860X(01)00813-4

    CAS  Article  Google Scholar 

  23. 23.

    Greenfield H (1964) Hydrogenation of aniline to cyclohexylamine with platinum metal catalysts. J Org Chem 29:3082–3084. https://doi.org/10.1021/jo01033a512

    CAS  Article  Google Scholar 

  24. 24.

    Mahdi T, Heiden ZM, Grimme S, Stephan DW (2012) Metal-free aromatic hydrogenation: aniline to cyclohexyl-amine derivatives. J Am Chem Soc 134:4088–4091. https://doi.org/10.1021/ja300228a

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Pingen D, Müller C, Vogt D (2010) Direct amination of secondary alcohols using ammonia. Angew Chem Int Ed 49:8130–8133. https://doi.org/10.1002/anie.201002583

    CAS  Article  Google Scholar 

  26. 26.

    Kudryashov SV, Ryabov AY, Sirotkina EE, Shchegoleva GS (2016) Transformations of n-hexane and cyclohexane by barrier discharge processing in inert gases. High Energy Chem 35:120–122. https://doi.org/10.1023/A:1004125607204

    Article  Google Scholar 

Download references

Acknowledgements

This work has received the support of Institut Pierre-Gilles de Gennes (laboratoire d’excellence, “Investissements d’avenir” program ANR-10-EQPX-34, program ANR-10-IDEX-0001-02 PSL and ANR-10-LABX-31.).

Funding

Not applicable.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stéphanie Ognier.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4936 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lepoetre, A., Ognier, S., Zhang, M. et al. Amination of Cyclohexane by Dielectric Barrier Discharge Processing in a Continuous Flow Microreactor: Experimental and Simulation Studies. Plasma Chem Plasma Process 41, 351–368 (2021). https://doi.org/10.1007/s11090-020-10140-9

Download citation

Keywords

  • Amination
  • Ammonia discharges
  • Dielectric barrier discharges (DBD)
  • Microreactor
  • Radicals
  • Flow chemistry