Abstract
This study describes and evaluates a low-temperature method for ambient-air plasma fabrication of hybrid titania/silica nanocomposite mesoporous layers that generate and transport electrons. The mesoporous layers were prepared using wet coating with a dispersion consisting of prefabricated titania nanoparticles and polysiloxane binder, subsequently inkjet-printed and plasma-processed by diffuse coplanar surface barrier discharge, to form an almost inorganic titania/silica coating of the high specific surface. The study demonstrates approaches to optimization of the coating, using various TiO2 nanoparticles, and of the plasma processing, together with the economic significance of printing and plasma processing—an approach compatible with processes envisaged for the manufacture of flexible electronics.
This is a preview of subscription content,
to check access.












References
Weerasinghe HC, Huang F, Cheng Y-B (2013) Fabrication of flexible dye sensitized solar cells on plastic substrates. Nano Energy 2:174–189. https://doi.org/10.1016/j.nanoen.2012.10.004
Gong J, Liang J, Sumathy K (2012) Review on dye-sensitized solar cells (DSSCs): fundamental concepts and novel materials. Renew Sustain Energy Rev 16:5848–5860. https://doi.org/10.1016/j.rser.2012.04.044
Hashmi SG, Özkan M, Halme J et al (2016) Dye-sensitized solar cells with inkjet-printed dyes. Energy Environ Sci 9:2453–2462. https://doi.org/10.1039/c6ee00826g
Gong J, Sumathy K, Qiao Q, Zhou Z (2017) Review on dye-sensitized solar cells (DSSCs): advanced techniques and research trends. Renew Sustain Energy Rev 68:234–246. https://doi.org/10.1016/j.rser.2016.09.097
Grätzel M (2017) The rise of highly efficient and stable perovskite solar cells. Acc Chem Res 50:487–491. https://doi.org/10.1021/acs.accounts.6b00492
Williams ST, Rajagopal A, Chueh C-C, Jen AK-Y (2016) Current challenges and prospective research for upscaling hybrid perovskite photovoltaics. J Phys Chem Lett 7:811–819. https://doi.org/10.1021/acs.jpclett.5b02651
Razza S, Castro-Hermosa S, Di Carlo A, Brown TM (2016) Research update: large-area deposition, coating, printing, and processing techniques for the upscaling of perovskite solar cell technology. APL Mater 4:091508. https://doi.org/10.1063/1.4962478
Green MA, Ho-Baillie AW-Y (2017) Perovskite solar cells: the birth of a new era in photovoltaics. ACS Energy Lett 2:822–830. https://doi.org/10.1021/acsenergylett.7b00137
Levchuk I, Sillanpää M, Guillard C et al (2016) Enhanced photocatalytic activity through insertion of plasmonic nanostructures into porous TiO2/SiO2 hybrid composite films. J Catal 342:117–124. https://doi.org/10.1016/j.jcat.2016.07.015
Méndez-Medrano MG, Kowalska E, Lehoux A et al (2016) Surface modification of TiO2 with Au nanoclusters for efficient water treatment and hydrogen generation under visible light. J Phys Chem C 120:25010–25022. https://doi.org/10.1021/acs.jpcc.6b06854
Eftekhari A, Babu VJ, Ramakrishna S (2017) Photoelectrode nanomaterials for photoelectrochemical water splitting. Int J Hydrogen Energy 42:11078–11109. https://doi.org/10.1016/j.ijhydene.2017.03.029
Priebe JB, Radnik J, Lennox AJJ et al (2015) Solar hydrogen production by plasmonic Au–TiO2 catalysts: impact of synthesis protocol and TiO2 phase on charge transfer efficiency and H2 evolution rates. ACS Catal 5:2137–2148. https://doi.org/10.1021/cs5018375
Li W, Wang F, Liu Y et al (2015) General strategy to synthesize uniform mesoporous TiO2/graphene/mesoporous TiO2 sandwich-like nanosheets for highly reversible lithium storage. Nano Lett 15:2186–2193. https://doi.org/10.1021/acs.nanolett.5b00291
Correa-Baena J-P, Saliba M, Buonassisi T et al (2017) Promises and challenges of perovskite solar cells. Science 358:739–744. https://doi.org/10.1126/science.aam6323
Chang NL, Ho-Baillie AWY, Vak D et al (2018) Manufacturing cost and market potential analysis of demonstrated roll-to-roll perovskite photovoltaic cell processes. Sol Energy Mater Sol Cells 174:314–324. https://doi.org/10.1016/j.solmat.2017.08.038
Mali SS, Hong CK (2016) P-i-n/n-i-p type planar hybrid structure of highly efficient perovskite solar cells towards improved air stability: synthetic strategies and the role of p-type hole transport layer (HTL) and n-type electron transport layer (ETL) metal oxides. Nanoscale 8:10528–10540. https://doi.org/10.1039/c6nr02276f
Chou C-Y, Chang H, Liu H-W et al (2015) Atmospheric-pressure-plasma-jet processed nanoporous TiO2 photoanodes and Pt counter-electrodes for dye-sensitized solar cells. RSC Adv 5:45662–45667. https://doi.org/10.1039/C5RA05014F
Yasin A, Guo F, Demopoulos GP (2016) Aqueous, screen-printable paste for fabrication of mesoporous composite anatase-rutile TiO2 nanoparticle thin films for (photo)electrochemical devices. ACS Sustain Chem Eng 4:2173–2181. https://doi.org/10.1021/acssuschemeng.5b01625
Li R, Zhao Y, Hou R et al (2016) Enhancement of power conversion efficiency of dye sensitized solar cells by modifying mesoporous TiO2 photoanode with Al-doped TiO2 layer. J Photochem Photobiol A Chem 319–320:62–69. https://doi.org/10.1016/j.jphotochem.2016.01.002
Wang Y, Yuan Q, Yin G et al (2016) Synthesis of mixed-phase TiO2 nanopowders using atmospheric pressure plasma jet driven by dual-frequency power sources. Plasma Chem Plasma Process 36:1471–1484. https://doi.org/10.1007/s11090-016-9746-x
Chou W-C, Liu W-J (2016) Study of dye sensitized solar cell application of TiO2 films by atmospheric pressure plasma deposition method. In: 2016 International conference on Electronic Package, IEEE, pp 664–668
Di Giacomo F, Zardetto V, D’Epifanio A et al (2015) Flexible perovskite photovoltaic modules and solar cells based on atomic layer deposited compact layers and UV-irradiated TiO2 scaffolds on plastic substrates. Adv Energy Mater 5:1401808. https://doi.org/10.1002/aenm.201401808
Kim H, Hwang T (2014) Effect of titanium isopropoxide addition in low-temperature cured TiO2 photoanode for a flexible DSSC. J Sol-Gel Sci Technol 72:67–73. https://doi.org/10.1007/s10971-014-3427-0
Jiang YF, Chen YY, Zhang B, Feng YQ (2016) N, La Co-doped TiO2 for use in low-temperature-based dye-sensitized solar cells. J Electrochem Soc 163:F1133–F1138. https://doi.org/10.1149/2.0141610jes
Li F, Xu M, Ma X et al (2018) UV treatment of low-temperature processed SnO2 electron transport layers for planar perovskite solar cells. Nanoscale Res Lett. https://doi.org/10.1186/s11671-018-2633-z
Zardetto V, Brown TM, Reale A, Di Carlo A (2011) Substrates for flexible electronics: a practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties. J Polym Sci, Part B: Polym Phys 49:638–648. https://doi.org/10.1002/polb.22227
Medvecká V, Kováčik D, Zahoranová A et al (2016) Atmospheric pressure plasma assisted calcination of organometallic fibers. Mater Lett 162:79–82. https://doi.org/10.1016/j.matlet.2015.09.109
Medvecká V, Kováčik D, Tučeková Z et al (2016) Atmospheric pressure plasma assisted calcination of composite submicron fibers. Eur Phys J Appl Phys 75:24715. https://doi.org/10.1051/epjap/2016150585
Mudra E, Streckova M, Pavlinak D et al (2016) Development of Al2O3 electrospun fibers prepared by conventional sintering method or plasma assisted surface calcination. Appl Surf Sci 415:90–98. https://doi.org/10.1016/j.apsusc.2016.11.162
Medvecká V, Kováčik D, Zahoranová A, Černák M (2018) Atmospheric pressure plasma assisted calcination by the preparation of TiO2 fibers in submicron scale. Appl Surf Sci 428:609–615. https://doi.org/10.1016/j.apsusc.2017.09.178
Prysiazhnyi V, Brablec A, Čech J et al (2014) Generation of large-area highly-nonequlibrium plasma in pure hydrogen at atmospheric pressure. Contrib Plasma Phys 54:138–144. https://doi.org/10.1002/ctpp.201310060
Krumpolec R, Čech J, Jurmanová J et al (2017) Atmospheric pressure plasma etching of silicon dioxide using diffuse coplanar surface barrier discharge generated in pure hydrogen. Surf Coat Technol 309:301–308. https://doi.org/10.1016/j.surfcoat.2016.11.036
Jirásek V, Čech J, Kozak H et al (2016) Plasma treatment of detonation and HPHT nanodiamonds in diffuse coplanar surface barrier discharge in H2/N2 flow. Phys Status Solidi Appl Mater Sci 213:2680–2686. https://doi.org/10.1002/pssa.201600184
Kromka A, Čech J, Kozak H et al (2015) Low-temperature hydrogenation of diamond nanoparticles using diffuse coplanar surface barrier discharge at atmospheric pressure. Phys Status Solidi 252:2602–2607. https://doi.org/10.1002/pssb.201552232
Homola T, Pospíšil J, Krumpolec R et al (2018) Atmospheric dry hydrogen plasma reduction of inkjet-printed flexible graphene oxide surfaces. Chemsuschem 11:941–947. https://doi.org/10.1002/cssc.201702139
Homola T, Shekargoftar M, Pospíšil J (2020) Atmospheric plasma treatment of ITO thin films for rapid manufacturing of perovskite solar cells. In: NANOCON 2019 Conference on Proeedings of TANGER Ltd., pp 43–47. https://doi.org/10.37904/nanocon.2019.8645
Šimončicová J, Kaliňáková B, Kováčik D et al (2018) Cold plasma treatment triggers antioxidative defense system and induces changes in hyphal surface and subcellular structures of Aspergillus flavus. Appl Microbiol Biotechnol 102:6647–6658. https://doi.org/10.1007/s00253-018-9118-y
Waskow A, Betschart J, Butscher D et al (2018) Characterization of efficiency and mechanisms of cold atmospheric pressure plasma decontamination of seeds for sprout production. Front Microbiol 9:3164. https://doi.org/10.3389/FMICB.2018.03164
Homola T, Shekargoftar M, Dzik P et al (2017) Low-temperature (70 °C) ambient air plasma-fabrication of inkjet-printed mesoporous TiO2 flexible photoanodes. Flex Print Electron 2:035010. https://doi.org/10.1088/2058-8585/aa88e6
Homola T, Dzik P, Veselý M et al (2016) Fast and low-temperature (70 °C) mineralization of inkjet printed mesoporous TiO2 photoanodes using ambient air plasma. ACS Appl Mater Interfaces 8:33562–33571. https://doi.org/10.1021/acsami.6b09556
Shoeb J, Wang MM, Kushner MJ (2012) Damage by radicals and photons during plasma cleaning of porous low-k SiOCH. I. Ar/O2 and He/H2 plasmas. J Vac Sci Technol, A 30:041303. https://doi.org/10.1116/1.4718444
Shoeb J, Kushner MJ (2012) Damage by radicals and photons during plasma cleaning of porous low-k SiOCH. II. Water uptake and change in dielectric constant. J Vac Sci Technol, A 30:041304. https://doi.org/10.1116/1.4718447
Homola T, Pongrác B, Zemánek M, Šimek M (2019) Efficiency of ozone production in coplanar dielectric barrier discharge. Plasma Chem Plasma Process 39:1227–1242. https://doi.org/10.1007/s11090-019-09993-6
Morozova M, Kluson P, Krysa J et al (2011) Thin TiO2 films prepared by inkjet printing of the reverse micelles sol–gel composition. Sens Actuat B 160:371–378. https://doi.org/10.1016/j.snb.2011.07.063
Černá M, Veselý M, Dzik P et al (2013) Fabrication, characterization and photocatalytic activity of TiO2 layers prepared by inkjet printing of stabilized nanocrystalline suspensions. Appl Catal B 138:84–94. https://doi.org/10.1016/j.apcatb.2013.02.035
Dzik P, Veselý M, Kete M et al (2015) Properties and application perspective of hybrid titania-silica patterns fabricated by inkjet printing. ACS Appl Mater Interfaces 7:16177–16190. https://doi.org/10.1021/acsami.5b03494
Hynek J, Kalousek V, Žouželka R et al (2014) High photocatalytic activity of transparent films composed of ZnO nanosheets. Langmuir 30:380–386. https://doi.org/10.1021/la404017q
Vidmar T, Topič M, Dzik P, Opara Krašovec U (2014) Inkjet printing of sol–gel derived tungsten oxide inks. Sol Energy Mater Sol Cells 125:87–95. https://doi.org/10.1016/j.solmat.2014.02.023
Grégori D, Benchenaa I, Chaput F et al (2014) Mechanically stable and photocatalytically active TiO2/SiO2 hybrid films on flexible organic substrates. J Mater Chem A 2:20096–20104. https://doi.org/10.1039/C4TA03826F
Chua CS, Tan OK, Tse MS, Ding X (2013) Photocatalytic activity of tin-doped TiO2 film deposited via aerosol assisted chemical vapor deposition. Thin Solid Films 544:571–575. https://doi.org/10.1016/j.tsf.2012.12.066
Sang G, Yun Y, Hee M et al (2018) Correlation between photoactivity of TiO2 and diffusion of Na + ions from soda lime glass. Mater Lett 228:351–355. https://doi.org/10.1016/j.matlet.2018.06.057
Kim SJ, Kim MC, Han SB et al (2016) 3D flexible Si based-composite (Si@Si3N4)/CNF electrode with enhanced cyclability and high rate capability for lithium-ion batteries. Nano Energy 27:545–553. https://doi.org/10.1016/j.nanoen.2016.08.012
Biesinger MC, Lau LWM, Gerson AR et al (2010) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl Surf Sci 257:2717–2730. https://doi.org/10.1016/j.apsusc.2010.10.051
Khung YL, Ngalim SH, Scaccabarozzi A, Narducci D (2015) Formation of stable Si–O–C submonolayers on hydrogenterminated silicon(111) under low-temperature conditions. Beilstein J Nanotechnol 6:19–26. https://doi.org/10.3762/bjnano.6.3
Acknowledgements
This research was supported by project 19-14770Y funded by Czech Science Foundation and by the project LM2018097 funded by Ministry of Education, Youth and Sports of Czech Republic.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Homola, T., Ďurašová, Z., Shekargoftar, M. et al. Optimization of TiO2 Mesoporous Photoanodes Prepared by Inkjet Printing and Low-Temperature Plasma Processing. Plasma Chem Plasma Process 40, 1311–1330 (2020). https://doi.org/10.1007/s11090-020-10086-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11090-020-10086-y