Skip to main content
Log in

Microwave Plasma Jet in Water: Effect of Water Electrical Conductivity on Plasma Characteristics

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript


Plasma-induced water treatment is a novel water treatment technique that has shown high efficiency and flexibility. Although the electrical conductivity of impure water varies depending on the degree of pollution, its influence on plasma treatment efficiency is not well understood. In this study, we investigate the fundamentals of a microwave plasma jet submerged in water with electrical conductivities (σw) ranging from 10 to 10,000 µS/cm. The plasma characteristics, namely composition, electron density, and temperature, and their variations as a function of σw, are derived using optical emission spectroscopy. The plasma-bubble dynamics is investigated using space- and time-resolved high-speed imaging. The results show that the plasma fills the bubble volume at relatively low flow rate (typically, < 2 L/min) and high σw (typically, > 1000 µS/cm). The influence of σw on the degradation of methylene blue, a standard water pollutant, is also assessed, and the obtained results indicate that the plasma becomes extremely inefficient at high σw. These findings are of great importance for the community of plasma-induced liquid processing, particularly wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others


  1. Belmonte T, Hamdan A, Kosior F, Noël C, Henrion G (2014) Interaction of discharges with electrode surfaces in dielectric liquids: application to nanoparticle synthesis. J Phys D Appl Phys 47(22):224016

    Article  Google Scholar 

  2. Hamdan A, Noël C, Ghanbaja J, Belmonte T (2014) Comparison of aluminium nanostructures created by discharges in various dielectric liquids. Plasma Chem Plasma Process 34(5):1101–1114

    Article  CAS  Google Scholar 

  3. Hamdan A, Noël C, Ghanbaja J, Migot-Choux S, Belmonte T (2013) Synthesis of platinum embedded in amorphous carbon by micro-gap discharge in heptane. Mater Chem Phys 142(1):199–206

    Article  CAS  Google Scholar 

  4. Yang Y, Cho YI, Fridman A (2017) Plasma discharge in liquid: water treatment and applications. CRC Press, Taylor & Francis Group, Boca Raton

    Book  Google Scholar 

  5. Misra NN, Schlüter O, Cullen PJ (eds) (2016) Cold plasma in food and agriculture: fundamentals and applications, Academic Press

  6. Ito M, Ohta T, Hori M (2012) Plasma agriculture. J Korean Phys Soc 60(6):937–943

    Article  Google Scholar 

  7. Bruggeman PJ et al (2016) Plasma–liquid interactions: a review and roadmap. Plasma Sources Sci Technol 25(5):053002

    Article  Google Scholar 

  8. Weltmann KD, Kindel E, von Woedtke T, Hähnel M, Stieber M, Brandenburg R (2010) Atmospheric-pressure plasma sources: prospective tools for plasma medicine. Pure Appl Chem 82(6):1223–1237

    Article  CAS  Google Scholar 

  9. Maheux S et al (2015) Formation of ammonium in saline solution treated by nanosecond pulsed cold atmospheric microplasma: a route to fast inactivation of E. coli bacteria. RSC Adv 5(52):42135–42140

    Article  CAS  Google Scholar 

  10. Schütze A, Jeong JY, Babayan SE, Park J, Selwyn GS, Hicks RF (1998) The atmospheric-pressure plasma jet: a review and comparison to other plasma sources. IEEE Trans Plasma Sci 26(6):1685–1694

    Article  Google Scholar 

  11. Bruggeman P, Schram D, González MÁ, Rego R, Kong MG, Leys C (2009) Characterization of a direct dc-excited discharge in water by optical emission spectroscopy. Plasma Sources Sci Technol 18(2):025017

    Article  Google Scholar 

  12. Lu XP, Laroussi M (2005) Atmospheric pressure glow discharge in air using a water electrode. IEEE Trans Plasma Sci 33(2):272–273

    Article  CAS  Google Scholar 

  13. Wang H, Wandell RJ, Tachibana K, Voráč J, Locke BR (2018) The influence of liquid conductivity on electrical breakdown and hydrogen peroxide production in a nanosecond pulsed plasma discharge generated in a water-film plasma reactor. J Phys D Appl Phys 52(7):075201

    Article  Google Scholar 

  14. Ishijima T, Hotta H, Sugai H, Sato M (2007) Multibubble plasma production and solvent decomposition in water by slot-excited microwave discharge. Appl Phys Lett 91(12):1–4

    Article  Google Scholar 

  15. Hamdan A, Čerņevičs K, Cha MS (2017) The effect of electrical conductivity on nanosecond discharges in distilled water and in methanol with argon bubbles. J Phys D Appl Phys 50(18):185207

    Article  Google Scholar 

  16. Kolikov VA et al (2007) Prolonged microbial resistance of water treated by a pulsed electrical discharge. Tech Phys 52(2):263–270

    Article  CAS  Google Scholar 

  17. Kolikov VA, Kurochkin VE, Panina LK, Rutberg FG (2005) Pulse Electric discharges and the prolonged microbial resistance of water. Dokl Biol Sci 403:279–281

    Article  CAS  Google Scholar 

  18. Lukes P et al (1999) Generation of chemically active species by electrical discharges in water. Plasma Sources Sci Technol 8:258

    Article  Google Scholar 

  19. Liu J-L, Park H-W, Hamdan A, Cha MS (2018) In-liquid arc plasma jet and its application to phenol degradation. J Phys D Appl Phys 51:114005

    Article  Google Scholar 

  20. Hamdan A, Liu JL, Cha MS (2018) Microwave plasma jet in water: characterization and feasibility to wastewater treatment. Plasma Chem Plasma Process 38(5):1003–1020

    Article  CAS  Google Scholar 

  21. Malik MA (2010) Water purification by plasmas: which reactors are most energy efficient? Plasma Chem Plasma Process 30(1):21–31

    Article  CAS  Google Scholar 

  22. Cardoso RP, Belmonte T, Keravec P, Kosior F, Henrion G (2007) Influence of impurities on the temperature of an atmospheric helium plasma in microwave resonant cavity. J Phys D Appl Phys 40:1394–1400

    Article  CAS  Google Scholar 

  23. Bruggeman P, Brandenburg R (2013) Atmospheric pressure discharge filaments and microplasmas: physics, chemistry and diagnostics. J Phys D Appl Phys 46(46):464001

    Article  Google Scholar 

  24. Chen C-J, Li S-Z, Zhang J, Liu D (2017) “Temporally resolved diagnosis of an atmospheric-pressure pulse- modulated argon surface wave plasma by optical emission spectroscopy. J Phys D Appl Phys 51(2):025201

    Article  Google Scholar 

  25. Gigosos MA, Valentín C (1996) New plasma diagnosis tables of hydrogen Stark broadening including ion dynamics. J Phys B: At Mol Opt Phys 29(20):4795

    Article  CAS  Google Scholar 

  26. Bruggeman P, Schram DC (2010) On OH production in water containing atmospheric pressure plasmas. Plasma Sources Sci Technol 19(4):045025

    Article  Google Scholar 

  27. Bravo JA, Rincón R, Muñoz J, Sánchez A, Calzada MD (2015) Spectroscopic characterization of argon-nitrogen surface-wave discharges in dielectric tubes at atmospheric pressure. Plasma Chem Plasma Process 35(6):993–1014

    Article  CAS  Google Scholar 

  28. Durocher-Jean A, Delnour N, Stafford L (2019) Influence of N2, O2, and H2 admixtures on the electron power balance and neutral gas heating in microwave Ar plasmas at atmospheric pressure. J Phys D Appl Phys.

    Article  Google Scholar 

  29. Hamdan A, Gagnon C, Aykul M, Profili J (2019) Characterization of a microwave plasma jet (TIAGO) in-contact with water: application in degradation of methylene blue dye. Plasma Process Polym (submitted)

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Ahmad Hamdan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 252 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamdan, A., Profili, J. & Cha, M.S. Microwave Plasma Jet in Water: Effect of Water Electrical Conductivity on Plasma Characteristics. Plasma Chem Plasma Process 40, 169–185 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: