Skip to main content

Efficiency of Ozone Production in Coplanar Dielectric Barrier Discharge

Abstract

Efficient generation of ozone by cold atmospheric plasmas is interesting for sterilisation and decontamination of thermally-sensitive surfaces. This paper presents a study of robust coplanar dielectric barrier discharge (DBD) for generating atmospheric pressure plasma in synthetic air and in oxygen. The atmospheric plasma generated by coplanar DBD in synthetic air showed considerably high ozone production of 2.41 g/h (2.25 slm, 45 W), while the production yield and energy cost were 54 g/kWh and 40.9 eV/molecule. The use of oxygen instead of synthetic air, at much lower discharge power (2.25 slm, 17 W), maintained the ozone production of 2.35 g/h, whereas the production yield significantly increased to 138 g/kWh with a corresponding energy cost of 12.9 eV/molecule. The temperature of coplanar DBD ceramics in synthetic air (45 W) and oxygen (17 W) plasma generation (continuous alternating-current operation) showed temperatures below 70 °C and 30 °C, respectively. The rotational temperatures obtained from optical emission spectroscopy indicated similar gas temperatures in the thin plasma layer close to the surface of the DBD ceramics. The low temperature of the plasma–ceramics interface evidences the applicability of coplanar DBD for the contact treatment of thermally sensitive surfaces where a high concentration of ozone is required.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Nassour K, Brahami M, Nemmich S, Hammadi N, Zouzou N, Tilmatine A (2016) Comparative experimental study between surface and volume DBD ozone generator. Ozone-Sci Eng 38:70–76. https://doi.org/10.1080/01919512.2015.1095632

    Article  CAS  Google Scholar 

  2. Šimek M, Prukner V, Schmidt J (2011) Optical and electrical characteristics of a single surface DBD micro-discharge produced in atmospheric-pressure nitrogen and synthetic air. Plasma Sour Sci Technol 20:025009. https://doi.org/10.1088/0963-0252/20/2/025009

    Article  CAS  Google Scholar 

  3. Šimek M, Ambrico PF, Prukner V (2011) ICCD microscopic imaging of a single micro-discharge in surface coplanar DBD geometry: determination of the luminous diameter of N2 and Ar streamers. Plasma Sour Sci Technol 20:025010. https://doi.org/10.1088/0963-0252/20/2/025010

    Article  Google Scholar 

  4. Šimek M, Pekárek S, Prukner V (2012) Ozone production using a power modulated surface dielectric barrier discharge in dry synthetic air. Plasma Chem Plasma Process 32:743–754. https://doi.org/10.1007/s11090-012-9382-z

    Article  CAS  Google Scholar 

  5. Siemens W (1857) Ueber die elektrostatische induction und die verzögerung des stroms in flaschendrähten. Ann der Phys und Chemie 178:66–122. https://doi.org/10.1002/andp.18571780905

    Article  Google Scholar 

  6. Kogelschatz U (2003) Dielectric-barrier discharges: their history, discharge physics, and industrial applications. Plasma Chem Plasma Process 23:1–46. https://doi.org/10.1023/A:1022470901385

    Article  CAS  Google Scholar 

  7. Pietsch GJ, Gibalov VI (1998) Dielectric barrier discharges and ozone synthesis. Pure Appl Chem 70:1169–1174. https://doi.org/10.1351/pac199870061169

    Article  CAS  Google Scholar 

  8. Gibalov VI, Pietsch GJ (2000) The development of dielectric barrier discharges in gas gaps and on surfaces. J Phys D Appl Phys 33:2618–2636. https://doi.org/10.1088/0022-3727/33/20/315

    Article  CAS  Google Scholar 

  9. Čech J, Bonaventura Z, Sťahel P, Zemánek M, Dvořáková H, Černák M (2017) Wide-pressure-range coplanar dielectric barrier discharge: operational characterisation of a versatile plasma source. Phys Plasmas 24:013504. https://doi.org/10.1063/1.4973442

    Article  CAS  Google Scholar 

  10. Homola T, Krumpolec R, Zemánek M, Kelar J, Synek P, Hoder T, Černák M (2017) An array of micro-hollow surface dielectric barrier discharges for large-area atmospheric-pressure surface treatments. Plasma Chem Plasma Process 37:1149–1163. https://doi.org/10.1007/s11090-017-9792-z

    Article  CAS  Google Scholar 

  11. Šimek M, Pekárek S, Prukner V (2010) Influence of power modulation on ozone production using an AC surface dielectric barrier discharge in oxygen. Plasma Chem Plasma Process 30:607–617. https://doi.org/10.1007/s11090-010-9245-4

    Article  CAS  Google Scholar 

  12. Zhang YF, Wei LS, Liang X, Deng HZ, Šimek M (2018) Characteristics of the discharge and ozone generation in oxygen-fed coaxial DBD using an amplitude-modulated AC power supply. Plasma Chem Plasma Process 38:1199–1208. https://doi.org/10.1007/s11090-018-9922-2

    Article  CAS  Google Scholar 

  13. Kováčik D (2006) Surface modification of polymer materials by atmospheric-pressure plasma induced grafting. Comenius University, Slovakia

    Google Scholar 

  14. Černák M, Kováčik D, Ráhel’ J, Sťahel P, Zahoranová A, Kubincová J, Tóth A, Černáková L (2011) Generation of a high-density highly non-equilibrium air plasma for high-speed large-area flat surface processing. Plasma Phys Control Fusion 53:124031. https://doi.org/10.1088/0741-3335/53/12/124031

    Article  CAS  Google Scholar 

  15. Skácelová D, Danilov V, Schäfer J, Quade A, Sťahel P, Černák M, Meichsner J (2013) Room temperature plasma oxidation in DCSBD: a new method for preparation of silicon dioxide films at atmospheric pressure. Mater Sci Eng, B 178:651–655. https://doi.org/10.1016/j.mseb.2012.10.017

    Article  CAS  Google Scholar 

  16. Skácelová D, Sládek P, Sťahel P, Pawera L, Haničinec M, Meichsner J, Černák M (2014) Properties of atmospheric pressure plasma oxidized layers on silicon wafers. Open Chem 13:376–381. https://doi.org/10.1515/chem-2015-0047

    Article  CAS  Google Scholar 

  17. Medvecká V, Kováčik D, Zahoranová A, Stupavská M, Černák M (2016) Atmospheric pressure plasma assisted calcination of organometallic fibers. Mater Lett 162:79–82. https://doi.org/10.1016/j.matlet.2015.09.109

    Article  CAS  Google Scholar 

  18. Medvecká V, Kováčik D, Zahoranová A, Černák M (2018) Atmospheric pressure plasma assisted calcination by the preparation of TiO2 fibers in submicron scale. Appl Surf Sci 428:609–615. https://doi.org/10.1016/j.apsusc.2017.09.178

    Article  CAS  Google Scholar 

  19. Prysiazhnyi V, Brablec A, Čech J, Stupavská M, Černák M (2014) Generation of large-area highly-nonequlibrium plasma in pure hydrogen at atmospheric pressure. Contrib Plasma Phys 54:138–144. https://doi.org/10.1002/ctpp.201310060

    Article  CAS  Google Scholar 

  20. Krumpolec R, Čech J, Jurmanová J, Ďurina P, Černák M (2017) Atmospheric pressure plasma etching of silicon dioxide using diffuse coplanar surface barrier discharge generated in pure hydrogen. Surf Coat Technol 309:301–308. https://doi.org/10.1016/j.surfcoat.2016.11.036

    Article  CAS  Google Scholar 

  21. Homola T, Shekargoftar M, Dzik P, Krumpolec R, Ďurašová Z, Veselý M, Černák M (2017) Low-temperature (70°C) ambient air plasma-fabrication of inkjet-printed mesoporous TiO2 flexible photoanodes. Flex Print Electron 2:035010. https://doi.org/10.1088/2058-8585/aa88e6

    Article  CAS  Google Scholar 

  22. Homola T, Pospíšil J, Krumpolec R, Souček P, Dzik P, Weiter M, Černák M (2018) Atmospheric dry hydrogen plasma reduction of inkjet-printed flexible graphene oxide surfaces. ChemSusChem 11:941–947. https://doi.org/10.1002/cssc.201702139

    Article  CAS  PubMed  Google Scholar 

  23. Homola T, Dzik P, Veselý M, Kelar J, Černák M, Weiter M (2016) Fast and low-temperature (70°C) mineralization of inkjet printed mesoporous TiO2 photoanodes using ambient air plasma. ACS Appl Mater Interfaces 8:33562–33571. https://doi.org/10.1021/acsami.6b09556

    Article  CAS  PubMed  Google Scholar 

  24. Weltmann KD, Kolb JF, Holub M et al (2019) The future for plasma science and technology. Plasma Process Polym 16:1–29. https://doi.org/10.1002/ppap.201800118

    Article  CAS  Google Scholar 

  25. Puač N, Gherardi M, Shiratani M (2018) Plasma agriculture: a rapidly emerging field. Plasma Process Polym 15:1700174. https://doi.org/10.1002/ppap.201700174

    Article  CAS  Google Scholar 

  26. Mošovská S, Medvecká V, Halászová N, Ďurina P, Valík Ľ, Mikulajová A, Zahoranová A (2018) Cold atmospheric pressure ambient air plasma inhibition of pathogenic bacteria on the surface of black pepper. Food Res Int 106:862–869. https://doi.org/10.1016/J.FOODRES.2018.01.066

    Article  PubMed  Google Scholar 

  27. Stolárik T, Henselová M, Martinka M, Novák O, Zahoranová A, Černák M (2015) Effect of low-temperature plasma on the structure of seeds, growth and metabolism of endogenous phytohormones in pea (Pisum sativum L.). Plasma Chem Plasma Process 35:659–676. https://doi.org/10.1007/s11090-015-9627-8

    Article  CAS  Google Scholar 

  28. Zahoranová A, Hoppanová L, Šimončicová J, Tučeková Z, Medvecká V, Hudecová D, Kaliňáková B, Kováčik D, Černák M (2018) Effect of cold atmospheric pressure plasma on maize seeds: enhancement of seedlings growth and surface microorganisms inactivation. Plasma Chem Plasma Process 38:969–988. https://doi.org/10.1007/s11090-018-9913-3

    Article  CAS  Google Scholar 

  29. Waskow A, Betschart J, Butscher D, Oberbossel G, Klöti D, Büttner-Mainik A, Adamcik J, Rudolf von Rohr P, Schuppler M (2018) Characterization of efficiency and mechanisms of cold atmospheric pressure plasma decontamination of seeds for sprout production. Front Microbiol 9:3164. https://doi.org/10.3389/FMICB.2018.03164

    Article  PubMed  PubMed Central  Google Scholar 

  30. Brandenburg R, Bongers W, Reuter S et al (2018) White paper on the future of plasma science in environment, for gas conversion and agriculture. Plasma Process Polym 16:1700238. https://doi.org/10.1002/ppap.201700238

    Article  CAS  Google Scholar 

  31. Ambrico PF, Šimek M, Morano M, De Miccolis Angelini RM, Minafra A, Trotti P, Ambrico M, Prukner V, Faretra F (2017) Reduction of microbial contamination and improvement of germination of sweet basil (Ocimum basilicum L.) seeds via surface dielectric barrier discharge. J Phys D Appl Phys 50:305401. https://doi.org/10.1088/1361-6463/aa77c8

    Article  CAS  Google Scholar 

  32. Mohammad Z, Kalbasi-Ashtari A, Riskowski G, Castillo A (2019) Reduction of salmonella and shiga toxin-producing escherichia coli on alfalfa seeds and sprouts using an ozone generating system. Int J Food Microbiol 289:57–63. https://doi.org/10.1016/J.IJFOODMICRO.2018.08.023

    Article  CAS  PubMed  Google Scholar 

  33. Pawłat J, Starek A, Sujak A, Terebun P, Kwiatkowski M, Budzeń M, Andrejko D (2018) Effects of atmospheric pressure plasma jet operating with DBD on Lavatera thuringiaca L. seeds’ germination. PLoS ONE 13:e0194349. https://doi.org/10.1371/journal.pone.0194349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Šimek M (2014) Optical diagnostics of streamer discharges in atmospheric gases. J Phys D Appl Phys 47:463001. https://doi.org/10.1088/0022-3727/47/46/463001

    Article  CAS  Google Scholar 

  35. Jõgi I, Erme K, Levoll E, Stamate E (2017) Radical production efficiency and electrical characteristics of a coplanar barrier discharge built by multilayer ceramic technology. J Phys D Appl Phys 50:465201. https://doi.org/10.1088/1361-6463/aa8dab

    Article  CAS  Google Scholar 

  36. Parra-Rojas FC, Passas M, Carrasco E, Luque A, Tanarro I, Simek M, Gordillo-Vázquez FJ (2013) Spectroscopic diagnostics of laboratory air plasmas as a benchmark for spectral rotational (gas) temperature determination in TLEs. J Geophys Res Sp Phys 118:4649–4661. https://doi.org/10.1002/jgra.50433

    Article  Google Scholar 

  37. Machala Z, Janda M, Hensel K, Jedlovský I, Leštinská L, Foltin V, Martišovitš V, Morvová M (2007) Emission spectroscopy of atmospheric pressure plasmas for bio-medical and environmental applications. J Mol Spectrosc 243:194–201. https://doi.org/10.1016/j.jms.2007.03.001

    Article  CAS  Google Scholar 

  38. Yuan D, Xie S, Ding C, Lin F, He Y, Wang Z, Cen K (2018) The benefits of small quantities of nitrogen in the oxygen feed to ozone generators. Ozone Sci Eng 40:313–320. https://doi.org/10.1080/01919512.2018.1427553

    Article  CAS  Google Scholar 

  39. Kossyi IA, Kostinsky AY, Matveyev AA, Silakov VP (1992) Kinetic scheme of the non-equilibrium discharge in nitrogen-oxygen mixtures. Plasma Sour Sci Technol 1:207–220. https://doi.org/10.1088/0963-0252/1/3/011

    Article  CAS  Google Scholar 

  40. Šimek M, Ambrico PF, Prukner V (2017) Evolution of N2(A3Σ+ u) in streamer discharges: influence of oxygen admixtures on formation of low vibrational levels. J Phys D Appl Phys 50:504002. https://doi.org/10.1088/1361-6463/aa96f3

    Article  CAS  Google Scholar 

  41. Šimek M, Bonaventura Z (2018) Non-equilibrium kinetics of the ground and excited states in N2–O2 under nanosecond discharge conditions: extended scheme and comparison with available experimental observations. J Phys D Appl Phys 51:504004. https://doi.org/10.1088/1361-6463/aadcd1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by project ref CZ.1.05/2.1.00/03.0086, funded by the European Regional Development Fund; Project LO1411 (NPU I), funded by the Ministry of Education, Youth and Sports of the Czech Republic. B.P. and M.S. were supported by the Czech Science Foundation (Contract No. GA15-04023S).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Homola.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Homola, T., Pongrác, B., Zemánek, M. et al. Efficiency of Ozone Production in Coplanar Dielectric Barrier Discharge. Plasma Chem Plasma Process 39, 1227–1242 (2019). https://doi.org/10.1007/s11090-019-09993-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-019-09993-6

Keywords

  • Ozone generation
  • Dielectric barrier discharge
  • Cold plasma
  • Coplanar DBD
  • Low-temperature plasma