Nassour K, Brahami M, Nemmich S, Hammadi N, Zouzou N, Tilmatine A (2016) Comparative experimental study between surface and volume DBD ozone generator. Ozone-Sci Eng 38:70–76. https://doi.org/10.1080/01919512.2015.1095632
Article
CAS
Google Scholar
Šimek M, Prukner V, Schmidt J (2011) Optical and electrical characteristics of a single surface DBD micro-discharge produced in atmospheric-pressure nitrogen and synthetic air. Plasma Sour Sci Technol 20:025009. https://doi.org/10.1088/0963-0252/20/2/025009
Article
CAS
Google Scholar
Šimek M, Ambrico PF, Prukner V (2011) ICCD microscopic imaging of a single micro-discharge in surface coplanar DBD geometry: determination of the luminous diameter of N2 and Ar streamers. Plasma Sour Sci Technol 20:025010. https://doi.org/10.1088/0963-0252/20/2/025010
Article
Google Scholar
Šimek M, Pekárek S, Prukner V (2012) Ozone production using a power modulated surface dielectric barrier discharge in dry synthetic air. Plasma Chem Plasma Process 32:743–754. https://doi.org/10.1007/s11090-012-9382-z
Article
CAS
Google Scholar
Siemens W (1857) Ueber die elektrostatische induction und die verzögerung des stroms in flaschendrähten. Ann der Phys und Chemie 178:66–122. https://doi.org/10.1002/andp.18571780905
Article
Google Scholar
Kogelschatz U (2003) Dielectric-barrier discharges: their history, discharge physics, and industrial applications. Plasma Chem Plasma Process 23:1–46. https://doi.org/10.1023/A:1022470901385
Article
CAS
Google Scholar
Pietsch GJ, Gibalov VI (1998) Dielectric barrier discharges and ozone synthesis. Pure Appl Chem 70:1169–1174. https://doi.org/10.1351/pac199870061169
Article
CAS
Google Scholar
Gibalov VI, Pietsch GJ (2000) The development of dielectric barrier discharges in gas gaps and on surfaces. J Phys D Appl Phys 33:2618–2636. https://doi.org/10.1088/0022-3727/33/20/315
Article
CAS
Google Scholar
Čech J, Bonaventura Z, Sťahel P, Zemánek M, Dvořáková H, Černák M (2017) Wide-pressure-range coplanar dielectric barrier discharge: operational characterisation of a versatile plasma source. Phys Plasmas 24:013504. https://doi.org/10.1063/1.4973442
Article
CAS
Google Scholar
Homola T, Krumpolec R, Zemánek M, Kelar J, Synek P, Hoder T, Černák M (2017) An array of micro-hollow surface dielectric barrier discharges for large-area atmospheric-pressure surface treatments. Plasma Chem Plasma Process 37:1149–1163. https://doi.org/10.1007/s11090-017-9792-z
Article
CAS
Google Scholar
Šimek M, Pekárek S, Prukner V (2010) Influence of power modulation on ozone production using an AC surface dielectric barrier discharge in oxygen. Plasma Chem Plasma Process 30:607–617. https://doi.org/10.1007/s11090-010-9245-4
Article
CAS
Google Scholar
Zhang YF, Wei LS, Liang X, Deng HZ, Šimek M (2018) Characteristics of the discharge and ozone generation in oxygen-fed coaxial DBD using an amplitude-modulated AC power supply. Plasma Chem Plasma Process 38:1199–1208. https://doi.org/10.1007/s11090-018-9922-2
Article
CAS
Google Scholar
Kováčik D (2006) Surface modification of polymer materials by atmospheric-pressure plasma induced grafting. Comenius University, Slovakia
Google Scholar
Černák M, Kováčik D, Ráhel’ J, Sťahel P, Zahoranová A, Kubincová J, Tóth A, Černáková L (2011) Generation of a high-density highly non-equilibrium air plasma for high-speed large-area flat surface processing. Plasma Phys Control Fusion 53:124031. https://doi.org/10.1088/0741-3335/53/12/124031
Article
CAS
Google Scholar
Skácelová D, Danilov V, Schäfer J, Quade A, Sťahel P, Černák M, Meichsner J (2013) Room temperature plasma oxidation in DCSBD: a new method for preparation of silicon dioxide films at atmospheric pressure. Mater Sci Eng, B 178:651–655. https://doi.org/10.1016/j.mseb.2012.10.017
Article
CAS
Google Scholar
Skácelová D, Sládek P, Sťahel P, Pawera L, Haničinec M, Meichsner J, Černák M (2014) Properties of atmospheric pressure plasma oxidized layers on silicon wafers. Open Chem 13:376–381. https://doi.org/10.1515/chem-2015-0047
Article
CAS
Google Scholar
Medvecká V, Kováčik D, Zahoranová A, Stupavská M, Černák M (2016) Atmospheric pressure plasma assisted calcination of organometallic fibers. Mater Lett 162:79–82. https://doi.org/10.1016/j.matlet.2015.09.109
Article
CAS
Google Scholar
Medvecká V, Kováčik D, Zahoranová A, Černák M (2018) Atmospheric pressure plasma assisted calcination by the preparation of TiO2 fibers in submicron scale. Appl Surf Sci 428:609–615. https://doi.org/10.1016/j.apsusc.2017.09.178
Article
CAS
Google Scholar
Prysiazhnyi V, Brablec A, Čech J, Stupavská M, Černák M (2014) Generation of large-area highly-nonequlibrium plasma in pure hydrogen at atmospheric pressure. Contrib Plasma Phys 54:138–144. https://doi.org/10.1002/ctpp.201310060
Article
CAS
Google Scholar
Krumpolec R, Čech J, Jurmanová J, Ďurina P, Černák M (2017) Atmospheric pressure plasma etching of silicon dioxide using diffuse coplanar surface barrier discharge generated in pure hydrogen. Surf Coat Technol 309:301–308. https://doi.org/10.1016/j.surfcoat.2016.11.036
Article
CAS
Google Scholar
Homola T, Shekargoftar M, Dzik P, Krumpolec R, Ďurašová Z, Veselý M, Černák M (2017) Low-temperature (70°C) ambient air plasma-fabrication of inkjet-printed mesoporous TiO2 flexible photoanodes. Flex Print Electron 2:035010. https://doi.org/10.1088/2058-8585/aa88e6
Article
CAS
Google Scholar
Homola T, Pospíšil J, Krumpolec R, Souček P, Dzik P, Weiter M, Černák M (2018) Atmospheric dry hydrogen plasma reduction of inkjet-printed flexible graphene oxide surfaces. ChemSusChem 11:941–947. https://doi.org/10.1002/cssc.201702139
Article
CAS
PubMed
Google Scholar
Homola T, Dzik P, Veselý M, Kelar J, Černák M, Weiter M (2016) Fast and low-temperature (70°C) mineralization of inkjet printed mesoporous TiO2 photoanodes using ambient air plasma. ACS Appl Mater Interfaces 8:33562–33571. https://doi.org/10.1021/acsami.6b09556
Article
CAS
PubMed
Google Scholar
Weltmann KD, Kolb JF, Holub M et al (2019) The future for plasma science and technology. Plasma Process Polym 16:1–29. https://doi.org/10.1002/ppap.201800118
Article
CAS
Google Scholar
Puač N, Gherardi M, Shiratani M (2018) Plasma agriculture: a rapidly emerging field. Plasma Process Polym 15:1700174. https://doi.org/10.1002/ppap.201700174
Article
CAS
Google Scholar
Mošovská S, Medvecká V, Halászová N, Ďurina P, Valík Ľ, Mikulajová A, Zahoranová A (2018) Cold atmospheric pressure ambient air plasma inhibition of pathogenic bacteria on the surface of black pepper. Food Res Int 106:862–869. https://doi.org/10.1016/J.FOODRES.2018.01.066
Article
PubMed
Google Scholar
Stolárik T, Henselová M, Martinka M, Novák O, Zahoranová A, Černák M (2015) Effect of low-temperature plasma on the structure of seeds, growth and metabolism of endogenous phytohormones in pea (Pisum sativum L.). Plasma Chem Plasma Process 35:659–676. https://doi.org/10.1007/s11090-015-9627-8
Article
CAS
Google Scholar
Zahoranová A, Hoppanová L, Šimončicová J, Tučeková Z, Medvecká V, Hudecová D, Kaliňáková B, Kováčik D, Černák M (2018) Effect of cold atmospheric pressure plasma on maize seeds: enhancement of seedlings growth and surface microorganisms inactivation. Plasma Chem Plasma Process 38:969–988. https://doi.org/10.1007/s11090-018-9913-3
Article
CAS
Google Scholar
Waskow A, Betschart J, Butscher D, Oberbossel G, Klöti D, Büttner-Mainik A, Adamcik J, Rudolf von Rohr P, Schuppler M (2018) Characterization of efficiency and mechanisms of cold atmospheric pressure plasma decontamination of seeds for sprout production. Front Microbiol 9:3164. https://doi.org/10.3389/FMICB.2018.03164
Article
PubMed
PubMed Central
Google Scholar
Brandenburg R, Bongers W, Reuter S et al (2018) White paper on the future of plasma science in environment, for gas conversion and agriculture. Plasma Process Polym 16:1700238. https://doi.org/10.1002/ppap.201700238
Article
CAS
Google Scholar
Ambrico PF, Šimek M, Morano M, De Miccolis Angelini RM, Minafra A, Trotti P, Ambrico M, Prukner V, Faretra F (2017) Reduction of microbial contamination and improvement of germination of sweet basil (Ocimum basilicum L.) seeds via surface dielectric barrier discharge. J Phys D Appl Phys 50:305401. https://doi.org/10.1088/1361-6463/aa77c8
Article
CAS
Google Scholar
Mohammad Z, Kalbasi-Ashtari A, Riskowski G, Castillo A (2019) Reduction of salmonella and shiga toxin-producing escherichia coli on alfalfa seeds and sprouts using an ozone generating system. Int J Food Microbiol 289:57–63. https://doi.org/10.1016/J.IJFOODMICRO.2018.08.023
Article
CAS
PubMed
Google Scholar
Pawłat J, Starek A, Sujak A, Terebun P, Kwiatkowski M, Budzeń M, Andrejko D (2018) Effects of atmospheric pressure plasma jet operating with DBD on Lavatera thuringiaca L. seeds’ germination. PLoS ONE 13:e0194349. https://doi.org/10.1371/journal.pone.0194349
Article
CAS
PubMed
PubMed Central
Google Scholar
Šimek M (2014) Optical diagnostics of streamer discharges in atmospheric gases. J Phys D Appl Phys 47:463001. https://doi.org/10.1088/0022-3727/47/46/463001
Article
CAS
Google Scholar
Jõgi I, Erme K, Levoll E, Stamate E (2017) Radical production efficiency and electrical characteristics of a coplanar barrier discharge built by multilayer ceramic technology. J Phys D Appl Phys 50:465201. https://doi.org/10.1088/1361-6463/aa8dab
Article
CAS
Google Scholar
Parra-Rojas FC, Passas M, Carrasco E, Luque A, Tanarro I, Simek M, Gordillo-Vázquez FJ (2013) Spectroscopic diagnostics of laboratory air plasmas as a benchmark for spectral rotational (gas) temperature determination in TLEs. J Geophys Res Sp Phys 118:4649–4661. https://doi.org/10.1002/jgra.50433
Article
Google Scholar
Machala Z, Janda M, Hensel K, Jedlovský I, Leštinská L, Foltin V, Martišovitš V, Morvová M (2007) Emission spectroscopy of atmospheric pressure plasmas for bio-medical and environmental applications. J Mol Spectrosc 243:194–201. https://doi.org/10.1016/j.jms.2007.03.001
Article
CAS
Google Scholar
Yuan D, Xie S, Ding C, Lin F, He Y, Wang Z, Cen K (2018) The benefits of small quantities of nitrogen in the oxygen feed to ozone generators. Ozone Sci Eng 40:313–320. https://doi.org/10.1080/01919512.2018.1427553
Article
CAS
Google Scholar
Kossyi IA, Kostinsky AY, Matveyev AA, Silakov VP (1992) Kinetic scheme of the non-equilibrium discharge in nitrogen-oxygen mixtures. Plasma Sour Sci Technol 1:207–220. https://doi.org/10.1088/0963-0252/1/3/011
Article
CAS
Google Scholar
Šimek M, Ambrico PF, Prukner V (2017) Evolution of N2(A3Σ+
u) in streamer discharges: influence of oxygen admixtures on formation of low vibrational levels. J Phys D Appl Phys 50:504002. https://doi.org/10.1088/1361-6463/aa96f3
Article
CAS
Google Scholar
Šimek M, Bonaventura Z (2018) Non-equilibrium kinetics of the ground and excited states in N2–O2 under nanosecond discharge conditions: extended scheme and comparison with available experimental observations. J Phys D Appl Phys 51:504004. https://doi.org/10.1088/1361-6463/aadcd1
Article
CAS
Google Scholar