Skip to main content
Log in

Combustion of Inert-Gas-Diluted Volatile Organic Compounds Using a Fuel-Rich Pilot Flame and Rotating Arc Plasma

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

This report proposes a method that uses plasma in combination with combustion to remove very low concentrations of volatile organic compounds (VOCs) that cannot be combusted with conventional burners. A burner with a fuel-rich pilot flame with an equivalence ratio of 1.5, 2, or 2.5 was formed, and a rotating arc plasma with a specific energy input (SEI) of 0–1.2 kJ/L was applied. When the plasma was used in the pilot flame, the temperature of the emitted gas increased, as did the concentration of combustible gas in the emitted gas, such that the selectivity reached a maximum of 0.8 (CO), 0.4 (H2), and 0.06 (C2H2). Lean VOC emission was simulated by preparing a mixture of propane and nitrogen with nitrogen content of 98% or 99% and this mixture was sprayed downstream from the plasma pilot flame to form the main flame. The combustion state of the main flame and exhaust gas was then analyzed to measure the hydrocarbon treatment ratio. The results showed that, when high-SEI plasma was employed in a high-equivalence-ratio pilot flame, NOx emission remained minimal and an HC treatment ratio close to 1 was obtainable. The use of this method for combustion enables the flow rates of treatable VOC mixtures to be specified such that the concentration of CO and NOx in the emitted gases is minimized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Li L, Xie S, Zeng L, Wu R, Li J (2015) Characteristics of volatile organic compounds and their role in ground-level ozone formation in the Beijing-Tianjin-Hebei region, China. Atmos Environ 113:247–254. https://doi.org/10.1016/j.atmosenv.2015.05.021

    Article  CAS  Google Scholar 

  2. Gao K, Xie J, Yang X (2015) Estimation of the contribution of human skin and ozone reaction to volatile organic compounds (VOC) concentration in aircraft cabins. Build Environ 94:12–20. https://doi.org/10.1016/j.buildenv.2015.07.022

    Article  Google Scholar 

  3. Wu W, Zhao B, Wang S, Hao J (2017) Ozone and secondary organic aerosol formation potential from anthropogenic volatile organic compounds emissions in China. J Environ Sci 53:224–237. https://doi.org/10.1016/j.jes.2016.03.025

    Article  Google Scholar 

  4. Shao P, An J, Xin J, Wu F, Wang J, Ji D, Wang Y (2016) Source apportionment of VOCs and the contribution to photochemical ozone formation during summer in the typical industrial area in the Yangtze River Delta, China. Atmos Res 176–177:64–74. https://doi.org/10.1016/j.atmosres.2016.02.015

    Article  CAS  Google Scholar 

  5. Zhao W, Al-Nasser LF, Shan S, Li J, Skeete Z, Kang N, Luo J, Lu S, Zhong C-J, Grausgruber CJ, Harris R (2016) Detection of mixed volatile organic compounds and lung cancer breaths using chemiresistor arrays with crosslinked nanoparticle thin films. Sens Actuators B 232:292–299. https://doi.org/10.1016/j.snb.2016.03.121

    Article  CAS  Google Scholar 

  6. Rudnicka J, Walczak M, Kowalkowski T, Jezierski T, Buszewski B (2014) Determination of volatile organic compounds as potential markers of lung cancer by gas chromatography–mass spectrometry versus trained dogs. Sens Actuators B 202:615–621. https://doi.org/10.1016/j.snb.2014.06.006

    Article  CAS  Google Scholar 

  7. Boeglin ML, Wessels D, Henshel D (2006) An investigation of the relationship between air emissions of volatile organic compounds and the incidence of cancer in Indiana counties. Environ Res 100(2):242–254. https://doi.org/10.1016/j.envres.2005.04.004

    Article  CAS  PubMed  Google Scholar 

  8. Khan FI, Ghoshal AK (2000) Removal of volatile organic compounds from polluted air. J Loss Prev Process Ind 13(6):527–545

    Article  Google Scholar 

  9. Ahn T, Lee W, Park S (2015) Stabilization of inert-fas-diluted co-flow diffusion flame by a pilot flame. J Korean Soc Combust 20(4):19–25

    Article  Google Scholar 

  10. Lee S, Choi I, Chang D (2013) Multi-objective optimization of VOC recovery and reuse in crude oil loading. Appl Eng 108:439–447

    Article  CAS  Google Scholar 

  11. Dunn RF, El-Halwagi MM (1994) Optimal design of multicomponent VOC condensation systems. J Hazard Mater 38(1):187–206

    Article  CAS  Google Scholar 

  12. Belaissaoui B, Le Moullec Y, Favre E (2016) Energy efficiency of a hybrid membrane/condensation process for VOC (volatile organic compounds) recovery from air: a generic approach. Energy 95:291–302. https://doi.org/10.1016/j.energy.2015.12.006

    Article  CAS  Google Scholar 

  13. Kajama MN, Shehu H, Okon E, Orakwe I, Gobina E (2016) VOC oxidation in excess of oxygen using flow-through catalytic membrane reactor. Int J Hydrog Energy 41(37):16529–16534. https://doi.org/10.1016/j.ijhydene.2016.04.164

    Article  CAS  Google Scholar 

  14. Kujawa J, Cerneaux S, Kujawski W (2015) Removal of hazardous volatile organic compounds from water by vacuum pervaporation with hydrophobic ceramic membranes. J Membr Sci 474:11–19. https://doi.org/10.1016/j.memsci.2014.08.054

    Article  CAS  Google Scholar 

  15. Ozturk B, Kuru C, Aykac H, Kaya S (2015) VOC separation using immobilized liquid membranes impregnated with oils. Sep Purif Technol 153:1–6. https://doi.org/10.1016/j.seppur.2015.08.032

    Article  CAS  Google Scholar 

  16. Indarto A, Yang DR, Azhari CH, Mohtar WHW, Choi J-W, Lee H, Song HK (2007) Advanced VOCs decomposition method by gliding arc plasma. Chem Eng J 131(1–3):337–341. https://doi.org/10.1016/j.cej.2006.11.009

    Article  CAS  Google Scholar 

  17. Karatum O, Deshusses MA (2016) A comparative study of dilute VOCs treatment in a non-thermal plasma reactor. Chem Eng J 294:308–315. https://doi.org/10.1016/j.cej.2016.03.002

    Article  CAS  Google Scholar 

  18. Ahn T, Lee D, Park S (2017) Reduction of lean VOC emission by reforming with a rotation arc plasma and combustion with a turbulent partially-premixed flame. J Korean Soc Combust 22(1):23–31

    Google Scholar 

  19. Tang X, Feng F, Ye L, Zhang X, Huang Y, Liu Z, Yan K (2013) Removal of dilute VOCs in air by post-plasma catalysis over Ag-based composite oxide catalysts. Catal Today 211:39–43. https://doi.org/10.1016/j.cattod.2013.04.026

    Article  CAS  Google Scholar 

  20. Kim EH, Chun YN (2016) VOC decomposition by a plasma-cavity combustor. Chem Eng Process Process Intensif 104:51–57. https://doi.org/10.1016/j.cep.2016.02.010

    Article  CAS  Google Scholar 

  21. Tamaddoni M, Sotudeh-Gharebagh R, Nario S, Hajihosseinzadeh M, Mostoufi N (2014) Experimental study of the VOC emitted from crude oil tankers. Process Saf Environ Prot 92(6):929–937. https://doi.org/10.1016/j.psep.2013.10.005

    Article  CAS  Google Scholar 

  22. Han M, Ai Y, Chen Z, Kong W (2015) Laminar flame speeds of H2/CO with CO2 dilution at normal and elevated pressures and temperatures. Fuel 148:32–38

    Article  CAS  Google Scholar 

  23. Nada Y, Matsumoto K, Noda S (2014) Liftoff heights of turbulent non-premixed flames in co-flows diluted by CO2/N2. Combust Flame 161(11):2890–2903. https://doi.org/10.1016/j.combustflame.2014.05.007

    Article  CAS  Google Scholar 

  24. Natarajan J, Lieuwen T, Seitzman J (2007) Laminar flame speeds of H2/CO mixtures: effect of CO2 dilution, preheat temperature, and pressure. Combust Flame 151(1):104–119

    Article  CAS  Google Scholar 

  25. Oh J, Khan QS, Yoon Y (2010) Nitrogen dilution effect on flame stability in a lifted non-premixed turbulent hydrogen jet with coaxial air. Fuel 89(7):1492–1498. https://doi.org/10.1016/j.fuel.2009.10.001

    Article  CAS  Google Scholar 

  26. Oh J, Noh D (2014) The effect of CO2 addition on the flame behavior of a non-premixed oxy-methane jet in a lab-scale furnace. Fuel 117:79–86. https://doi.org/10.1016/j.fuel.2013.08.065

    Article  CAS  Google Scholar 

  27. Prathap C, Ray A, Ravi M (2008) Investigation of nitrogen dilution effects on the laminar burning velocity and flame stability of syngas fuel at atmospheric condition. Combust Flame 155(1):145–160

    Article  CAS  Google Scholar 

  28. Lapalme D, Seers P (2014) Influence of CO2, CH4, and initial temperature on H2/CO laminar flame speed. Int J Hydrog Energy 39(7):3477–3486

    Article  CAS  Google Scholar 

  29. Wu Y, Modica V, Rossow B, Grisch F (2016) Effects of pressure and preheating temperature on the laminar flame speed of methane/air and acetone/air mixtures. Fuel 185:577–588

    Article  CAS  Google Scholar 

  30. Dugger GL (1952) Effect of initial mixture temperature on flame speed of methane-air, propane-air, and ethylene-air mixtures. NACA Report 1061

  31. Nassimi AM, Jafari M, Farrokhpour H, Keshavarz MH (2017) Constants of explosive limits. Chem Eng Sci 173(14):384–389

    Article  CAS  Google Scholar 

  32. Guo H, Smallwood GJ, Liu F, Ju Y, Gülder ÖL (2005) The effect of hydrogen addition on flammability limit and NOx emission in ultra-lean counterflow CH4/air premixed flames. Proc Combust Inst 30(1):303–311

    Article  CAS  Google Scholar 

  33. Al-Hamamre Z, Yamin J (2013) The effect of hydrogen addition on premixed laminar acetylene–hydrogen–air and ethanol–hydrogen–air flames. Int J Hydrog Energy 38(18):7499–7509

    Article  CAS  Google Scholar 

  34. Jo S, Lee DH, Song Y-H (2013) Effect of gas temperature on partial oxidation of methane in plasma reforming. Int J Hydrog Energy 38(31):13643–13648

    Article  CAS  Google Scholar 

  35. Liu J-L, Park H-W, Chung W-J, Ahn W-S, Park D-W (2016) Simulated biogas oxidative reforming in AC-pulsed gliding arc discharge. Chem Eng J 285:243–251

    Article  CAS  Google Scholar 

  36. Lee D, Kim K-T, Cha M, Song Y-H (2007) Optimization scheme of a rotating gliding arc reactor for partial oxidation of methane. Proc Combust Inst 31(2):3343–3351

    Article  CAS  Google Scholar 

  37. Lee DH, Kim K-T, Song Y-H, Kang WS, Jo S (2013) Mapping plasma chemistry in hydrocarbon fuel processing processes. Plasma Chem Plasma Process 33(1):249–269

    Article  CAS  Google Scholar 

  38. Tao S, Kaihua L, Cheng Z, Ping Y, Shichang Z, Ruzheng P (2008) Experimental study on repetitive unipolar nanosecond-pulse dielectric barrier discharge in air at atmospheric pressure. J Phys D Appl Phys 41(21):215203

    Article  CAS  Google Scholar 

  39. Xu X (2001) Dielectric barrier discharge—properties and applications. Thin Solid Films 390(1):237–242

    Article  CAS  Google Scholar 

  40. Chang J-S, Lawless PA, Yamamoto T (1991) Corona discharge processes. IEEE Trans Plasma Sci 19(6):1152–1166

    Article  CAS  Google Scholar 

  41. Tsui Y-Y, Huang Y-X, Lan C-C, Wang C-C (2017) A study of heat transfer enhancement via corona discharge by using a plate corona electrode. J Electrostat 87:1–10

    Article  Google Scholar 

  42. Horng R-F, Lai M-P, Chang Y-P, Yur J-P, Hsieh S-F (2009) Plasma-assisted catalytic reforming of propane and an assessment of its applicability on vehicles. Int J Hydrog Energy 34(15):6280–6289

    Article  CAS  Google Scholar 

  43. Du C, Mo J, Tang J, Huang D, Mo Z, Wang Q, Ma S, Chen Z (2014) Plasma reforming of bio-ethanol for hydrogen rich gas production. Appl Eng 133:70–79

    Article  CAS  Google Scholar 

  44. Bromberg L, Cohn D, Rabinovich A, Alexeev N (1999) Plasma catalytic reforming of methane. Int J Hydrog Energy 24(12):1131–1137

    Article  CAS  Google Scholar 

  45. Wang B, Yan W, Ge W, Duan X (2013) Methane conversion into higher hydrocarbons with dielectric barrier discharge micro-plasma reactor. J Energy Chem 22(6):876–882

    Article  CAS  Google Scholar 

  46. Rutberg PG, Kuznetsov VA, Popov VE, Popov SD, Surov AV, Subbotin DI, Bratsev AN (2015) Conversion of methane by CO2 + H2O + CH4 plasma. Appl Eng 148:159–168

    Article  CAS  Google Scholar 

  47. Kondo S, Takizawa K, Takahashi A, Tokuhashi K (2006) Extended Le Chatelier’s formula and nitrogen dilution effect on the flammability limits. Fire Saf J 41(5):406–417

    Article  CAS  Google Scholar 

  48. Kondo S, Takizawa K, Takahashi A, Tokuhashi K (2011) On the temperature dependence of flammability limits of gases. J Hazard Mater 187(1):585–590

    Article  CAS  PubMed  Google Scholar 

  49. Wu A, Yan J, Zhang H, Zhang M, Du C, Li X (2014) Study of the dry methane reforming process using a rotating gliding arc reactor. Int J Hydrog Energy 39(31):17656–17670

    Article  CAS  Google Scholar 

  50. Yu Q, Kong M, Liu T, Fei J, Zheng X (2011) Non-thermal plasma assisted CO2 reforming of propane over Ni/γ–Al2O3 catalyst. Catal Commun 12(14):1318–1322

    Article  CAS  Google Scholar 

  51. Zhang H, Wang W, Li X, Han L, Yan M, Zhong Y, Tu X (2018) Plasma activation of methane for hydrogen production in a N2 rotating gliding arc warm plasma: a chemical kinetics study. Chem Eng J 345(1):67–78

    Article  CAS  Google Scholar 

  52. Lewis B, Von Elbe G (1987) Combustion, flames and explosions of gases, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  53. Jomaas G, Zheng X, Zhu D, Law C (2005) Experimental determination of counterflow ignition temperatures and laminar flame speeds of C2–C3 hydrocarbons at atmospheric and elevated pressures. Proc Combust Inst 30(1):193–200

    Article  CAS  Google Scholar 

  54. Zhang M, Xue W, Su B, Bao Z, Wen G, Xing H, Ren Q (2017) Conversion of glycerol into syngas by rotating DC arc plasma. Energy 123:1–8

    Article  CAS  Google Scholar 

  55. Ombrello T, Won SH, Ju Y, Williams S (2010) Flame propagation enhancement by plasma excitation of oxygen. Part II: effects of O2(a1Δg). Combust Flame 157(10):1916–1928

    Article  CAS  Google Scholar 

  56. Suhlmann J, Rotzoll G (1993) Experimental characterization of the influence of CO on the high-temperature reduction of NO by NH3. Fuel 72(2):175–179

    Article  CAS  Google Scholar 

  57. Yao T, Duan Y, Yang Z, Li Y, Wang L, Zhu C, Zhou Q, Zhang J, She M, Liu M (2017) Experimental characterization of enhanced SNCR process with carbonaceous gas additives. Chemosphere 177:149–156

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We thank the Ministry of Oceans and Fisheries of Korea for its financial support through the project “Quantitative assessment of particulate matter (PM) and black carbon (BC) and climate change and development of reduction technology for PM and BC from ships.” We also thank the National Research Foundation of Korea (NRF-2015R1C1A1A01052961) for funding this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dae Hoon Lee or Sunho Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahn, T., Lee, D.H. & Park, S. Combustion of Inert-Gas-Diluted Volatile Organic Compounds Using a Fuel-Rich Pilot Flame and Rotating Arc Plasma. Plasma Chem Plasma Process 39, 423–444 (2019). https://doi.org/10.1007/s11090-019-09953-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-019-09953-0

Keywords

Navigation