Plasma Chemistry and Plasma Processing

, Volume 39, Issue 1, pp 325–338 | Cite as

Etching Kinetics and Mechanisms of SiC Thin Films in F-, Cl- and Br-Based Plasma Chemistries

  • Byung Jun Lee
  • Alexander Efremov
  • Junmyung Lee
  • Kwang-Ho KwonEmail author
Original Paper


The comparative study of SiC and SiO2 etching kinetics as well as the evaluation of SiC etching mechanisms in CF4 + Ar, Cl2 + Ar and HBr + Ar gas mixtures in inductively coupled plasma reactor were carried out. For each binary gas system, the experiments (SiC and SiO2 etching rates measurements, plasma diagnostic by Langmuir probes and optical spectroscopy) were conducted with variable fractional compositions of a feed gas at constant input power (700 W), bias power (300 W) and overall gas pressure (6 mTorr). The 0-dimensional (global) models for CF4 + Ar, Cl2 + Ar and HBr + Ar plasmas provided the information on the steady-state densities and fluxes for halogen atoms as well as on the ion energy flux to the treated surface. It was found that the transition toward Ar-rich plasmas in all investigated gas systems: (1) provides the non-monotonic (with a maximum at ~ 50–60% Ar) SiC etching rate; (2) leads to the monotonic decrease in both halogen atom density and flux; and (3) results in increasing both ion energy flux and effective probability for SiC + F, Cl or Br reactions. It was shown that absolute differences in effective reaction probabilities are in agreement with corresponding ion energy fluxes and reaction threshold energies.


SiC Plasma etching Plasma diagnostics and modeling Etching kinetics Etching process mechanism 



This work was supported by a Korea University Grant.


  1. 1.
    Xie KZ, Zhao JH, Flemish JR, Burke T, Buchwald WR, Lorenzo G, Singh H (1996) IEEE Electron Dev Lett 17:142CrossRefGoogle Scholar
  2. 2.
    Baliga BJ, Trans IEEE (1996) Electron Dev 43:1717CrossRefGoogle Scholar
  3. 3.
    Chelnokov VE (1992) Mater Sci Eng B 11:103CrossRefGoogle Scholar
  4. 4.
    Wright NG, Horsfall AB (2007) J Phys D Appl Phys 40:6345CrossRefGoogle Scholar
  5. 5.
    Lee J, Efremov A, Kim K, Kwon K-H (2017) Plasma Chem Plasma Proc 37:489CrossRefGoogle Scholar
  6. 6.
    Jiang L, Cheung R (2004) Microelectron Eng 73–74:306CrossRefGoogle Scholar
  7. 7.
    McDaniel G, Lee JW, Lambers ES, Pearton SJ, Holloway PH, Ren F, Grow JM, Bhaskaran M, Wilson RG (1997) J Vac Sci Technol A 15:885CrossRefGoogle Scholar
  8. 8.
    Wang JJ, Lambers ES, Pearton SJ, Ostling M, Zetterling C-M, Grow JM, Ren F, Shul RJ (1998) Solid-St Electr 42:2283CrossRefGoogle Scholar
  9. 9.
    Hong J, Shul RJ, Zhang L, Lester LF, Cho H, Hahn YB, Hays DC, Jung KB, Pearton SJ, Zetterling C-M, Östling M (1999) J Electr Mater 28:196CrossRefGoogle Scholar
  10. 10.
    Padiyath R, Wright RL, Chaudhry MI, Babua SV (1991) Appl Phys Lett 58:1053CrossRefGoogle Scholar
  11. 11.
    Cao L, Li B, Zhao JH (1998) J Electrochem Soc 145:3609CrossRefGoogle Scholar
  12. 12.
    Jiang L, Plank NOV, Blauw MA, Cheung R, van der Drift E (2004) J Phys D Appl Phys 37:1809CrossRefGoogle Scholar
  13. 13.
    Efremov A, Kang S, Kwon K-H, Choi WS (2011) J Vac Sci Technol A 29:06B103CrossRefGoogle Scholar
  14. 14.
    Gao D, Howe RT, Maboudian R (2003) Appl Phys Lett 82:1742CrossRefGoogle Scholar
  15. 15.
    Lide DR Handbook of chemistry and physics. CRC Press, New York, 1998–1999Google Scholar
  16. 16.
    Wolf S, Tauber RN (2000) Silicon processing for the VLSI era: process technology, vol 1. Lattice Press, New YorkGoogle Scholar
  17. 17.
    Sugano T (1990) Applications of plasma processes to VLSI technology. Wiley, New YorkGoogle Scholar
  18. 18.
    Coburn JW (1982) Plasma etching and reactive ion etching, AVS Monograph Series. New YorkGoogle Scholar
  19. 19.
    Seo JK, Ko K-H, Choi WS, Park M, Lee JH, Yi J-S (2011) J Cryst Growth 326:183CrossRefGoogle Scholar
  20. 20.
    Johnson EO, Malter L (1950) Phys Rev 80:58CrossRefGoogle Scholar
  21. 21.
    Sugavara M (1998) Plasma etching: fundamentals and applications. Oxford University Press, New YorkGoogle Scholar
  22. 22.
    Efremov A, Min N-K, Choi B-G, Baek K-H, Kwon K-H (2008) J Electrochem Soc 155:D777CrossRefGoogle Scholar
  23. 23.
    Kwon K-H, Efremov A, Kim M, Min NK, Jeong J, Kim K (2010) J Electrochem Soc 157:H574CrossRefGoogle Scholar
  24. 24.
    Chun I, Efremov A, Yeom GY, Kwon K-H (2015) Thin Solid Films 579:136CrossRefGoogle Scholar
  25. 25.
    Efremov A, Lee J, Kwon K-H (2017) Thin Solid Films 629:39CrossRefGoogle Scholar
  26. 26.
    Lieberman MA, Lichtenberg AJ (1994) Principles of plasma discharges and materials processing. Wiley, New YorkGoogle Scholar
  27. 27.
    Gray DC, Tepermeister I, Sawin HH (1993) J Vac Sci Technol B 11:1243CrossRefGoogle Scholar
  28. 28.
    Lee C, Graves DB, Lieberman MA (1996) Plasma Chem Plasma Proc 16:99CrossRefGoogle Scholar
  29. 29.
    Efremov AM, Kim DP, Kim CI, Trans IEEE (2004) Plasma Sci 32:1344CrossRefGoogle Scholar
  30. 30.
    Efremov A, Woo JC, Kim GH, Kim CI (2007) Microelectron Eng 84:638CrossRefGoogle Scholar
  31. 31.
    Efremov AM, Kim DP, Kim CI (2003) J Vac Sci Technol A 21:1017CrossRefGoogle Scholar
  32. 32.
    Christophorou LG, Olthoff JK, Rao MVVS (1996) J Phys Chem Ref Data 25:1341CrossRefGoogle Scholar
  33. 33.
    Christophorou LG, Olthoff JK (1999) J Phys Chem Ref Data 28:131CrossRefGoogle Scholar
  34. 34.
    Peterson LR, Allen JE Jr (1972) J Chem Phys 56:6068CrossRefGoogle Scholar
  35. 35.
    Jin W, Vitale SA, Sawin HH (2002) J Vac Sci Technol A 20:2106CrossRefGoogle Scholar
  36. 36.
    Chapman B (1980) Glow discharge processes: sputtering and plasma etching. Wiley, New YorkGoogle Scholar
  37. 37.
    Prskalo A-P, Schmauder S, Ziebert C, Ye J, Ulrich S (2010) Surf Coat Technol 204:2081CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Byung Jun Lee
    • 1
  • Alexander Efremov
    • 2
  • Junmyung Lee
    • 1
  • Kwang-Ho Kwon
    • 1
    Email author
  1. 1.Dept. of Control and Instrumentation EngineeringKorea UniversitySejongSouth Korea
  2. 2.Dept. of Electronic Devices & Materials TechnologyState University of Chemistry & TechnologyIvanovoRussia

Personalised recommendations