Advertisement

Plasma Chemistry and Plasma Processing

, Volume 38, Issue 6, pp 1209–1222 | Cite as

Synthesis of Copper-Based Nanostructures in Liquid Environments by Means of a Non-equilibrium Atmospheric Pressure Nanopulsed Plasma Jet

  • Anna Liguori
  • Tommaso Gallingani
  • Dilli Babu Padmanaban
  • Romolo Laurita
  • Tamilselvan Velusamy
  • Gunisha Jain
  • Manuel Macias-Montero
  • Davide Mariotti
  • Matteo Gherardi
Original Paper
  • 215 Downloads

Abstract

The influence of the liquid composition on the chemical and morphological properties of copper-based nanostructures synthesized by a non-equilibrium atmospheric plasma treatment is investigated and discussed. The synthesis approach is simple and environmentally friendly, employs a non-equilibrium nanopulsed atmospheric pressure plasma jet as a contactless cathode and a Cu foil as immersed anode. The process was studied using four distinct electrolyte solutions composed of distilled water and either NaCl + NaOH, NaCl only or NaOH only at two different concentrations, without the addition of any copper salts. CuO crystalline structures with limited impurities (e.g. Cu and Cu(OH)2 phases) were produced from NaCl + NaOH containing solutions, mainly CuO and CuCl2 structures were synthesized in the electrolyte solution containing only NaCl and no synthesis occurred in solutions containing only NaOH. Both aggregated and dispersed nanostructures were produced in the NaCl + NaOH and NaCl containing solutions. Reaction pathways leading to the formation of the nanostructures are proposed and discussed.

Keywords

Non-equilibrium atmospheric pressure plasma Synthesis of nanostructures Plasma–liquid interactions Reaction pathways X-ray photoelectron spectroscopy Transmission electron microscopy 

Notes

Acknowledgements

This work was partially supported by the PLASMAT Project (Alma Mater Studiorum—Università di Bologna, FARB Grant) and by COST Action TD1208 Electrical Discharges with Liquids for Future Applications. The authors would like to acknowledge Prof. Vittorio Colombo, Prof. Maria Letizia Focarete and Prof. Catia Arbizzani for the fruitful scientific conversations. This work was also partially supported by EPSRC (Award n.EP/M024938/1 and n.EP/K022237/1).

Compliance with Ethical Standards

Conflict of interest

The authors declare no competing financial interests.

References

  1. 1.
    Graves DB (2012) The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J Phys D Appl Phys 45:263001.  https://doi.org/10.1088/0022-3727/45/26/263001 CrossRefGoogle Scholar
  2. 2.
    Bruggeman P, Leys C (2009) Non-thermal plasmas in and in contact with liquids. J Phys D Appl Phys 42:053001.  https://doi.org/10.1088/0022-3727/42/5/053001 CrossRefGoogle Scholar
  3. 3.
    Wei-Hung C, Carolyn R, Sankaran RM (2010) Continuous-flow, atmospheric-pressure microplasmas: a versatile source for metal nanoparticle synthesis in the gas or liquid phase. Plasma Sources Sci Technol 19:34011.  https://doi.org/10.1088/0963-0252/19/3/034011 CrossRefGoogle Scholar
  4. 4.
    Patel J, Němcová L, Maguire P et al (2013) Synthesis of surfactant-free electrostatically stabilized gold nanoparticles by plasma-induced liquid chemistry. Nanotechnology 24:245604.  https://doi.org/10.1088/0957-4484/24/24/245604 CrossRefPubMedGoogle Scholar
  5. 5.
    Du C, Xiao M (2014) Cu2O nanoparticles synthesis by microplasma. Sci Rep 4:7339.  https://doi.org/10.1038/srep07339 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Mariotti D, Patel J, Svrcek V, Maguire P (2012) Plasma–liquid interactions at atmospheric pressure for nanomaterials synthesis and surface engineering. Plasma Process Polym 9:1074–1085.  https://doi.org/10.1002/ppap.201200007 CrossRefGoogle Scholar
  7. 7.
    Rumbach P, Bartels DM, Sankaran RM, Go DB (2015) The effect of air on solvated electron chemistry at a plasma/liquid interface. J Phys D Appl Phys 48:424001.  https://doi.org/10.1088/0022-3727/48/42/424001 CrossRefGoogle Scholar
  8. 8.
    Rumbach P, Witzke M, Sankaran RM, Go DB (2013) Decoupling interfacial reactions between plasmas and liquids: charge transfer vs plasma neutral reactions. J Am Chem Soc 135:16264–16267.  https://doi.org/10.1021/ja407149y CrossRefPubMedGoogle Scholar
  9. 9.
    Rumbach P, Griggs N, Sankaran RM, Go DB (2014) Visualization of electrolytic reactions at a plasma–liquid interface. IEEE Trans Plasma Sci 42:2610–2611.  https://doi.org/10.1109/TPS.2014.2322976 CrossRefGoogle Scholar
  10. 10.
    Mariotti D, Sankaran RM (2010) Microplasmas for nanomaterials synthesis. J Phys D Appl Phys 43:323001.  https://doi.org/10.1088/0022-3727/43/32/323001 CrossRefGoogle Scholar
  11. 11.
    Anžlovar A, Marinšek M, Orel ZC, Žigon M (2015) Basic zinc carbonate as a precursor in the solvothermal synthesis of nano-zinc oxide. Mater Des 86:347–353.  https://doi.org/10.1016/j.matdes.2015.07.087 CrossRefGoogle Scholar
  12. 12.
    Yu-Ping Z, Lee S-H, Reddy KR et al (2007) Synthesis and characterization of core–shell SiO2 nanoparticles/poly (3-aminophenylboronic acid) composites. J Appl Polym Sci 104:2743–2750.  https://doi.org/10.1002/app CrossRefGoogle Scholar
  13. 13.
    Hassan M, Haque E, Reddy KR et al (2014) Edge-enriched graphene quantum dots for enhanced photo-luminescence and supercapacitance. Nanoscale 6:11988–11994.  https://doi.org/10.1039/C4NR02365J CrossRefPubMedGoogle Scholar
  14. 14.
    Tan C, Zhang H (2015) Wet-chemical synthesis and applications of non-layer structured two-dimensional nanomaterials. Nat Commun 6:7873.  https://doi.org/10.1038/ncomms8873 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Reetz MT, Helbig W (1994) Size-selective synthesis of nanostructured transition metal clusters. J Am Chem Soc 116:7401–7402.  https://doi.org/10.1021/ja00095a051 CrossRefGoogle Scholar
  16. 16.
    Richmonds C, Sankaran RM (2008) Plasma–liquid electrochemistry: rapid synthesis of colloidal metal nanoparticles by microplasma reduction of aqueous cations. Appl Phys Lett 93:2013–2016.  https://doi.org/10.1063/1.2988283 CrossRefGoogle Scholar
  17. 17.
    Furuya K, Hirowatari Y, Ishioka T, Harata A (2007) Protective agent-free preparation of gold nanoplates and nanorods in aqueous HAuCl4 solutions using gas–liquid interface discharge. Chem Lett 36:1088–1089.  https://doi.org/10.1246/cl.2007.1088 CrossRefGoogle Scholar
  18. 18.
    Furusho H, Kitano K, Hamaguchi S, Nagasaki Y (2009) Preparation of stable water-dispersible PEGylated gold nanoparticles assisted by nonequilibrium atmospheric-pressure plasma jets. Chem Mater 21:3526–3535.  https://doi.org/10.1021/cm803290b CrossRefGoogle Scholar
  19. 19.
    Hieda J, Saito N, Takai O (2008) Exotic shapes of gold nanoparticles synthesized using plasma in aqueous solution. J Vac Sci Technol A Vac Surf Film 26:854.  https://doi.org/10.1116/1.2919139 CrossRefGoogle Scholar
  20. 20.
    Jana NR, Gearheart L, Murphy CJ (2001) Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J Phys Chem B 105:19.  https://doi.org/10.1021/jp0107964 CrossRefGoogle Scholar
  21. 21.
    Rogach AL (2000) Nanocrystalline CdTe and CdTe(S) particles: wet chemical preparation, size-dependent optical properties and perspectives of optoelectronic applications. Mater Sci Eng B Solid-State Mater Adv Technol 69:435–440.  https://doi.org/10.1016/S0921-5107(99)00231-7 CrossRefGoogle Scholar
  22. 22.
    Dierstein A, Natter H, Meyer F et al (2001) Electrochemical deposition under oxidizing conditions (EDOC): a new synthesis for nanocrystalline metal oxides. Scr Mater 44:2209–2212.  https://doi.org/10.1016/S1359-6462(01)00906-X CrossRefGoogle Scholar
  23. 23.
    Chang S-S, Lee C-L, Wang CRC (1997) Gold nanorods: electrochemical synthesis and optical properties. J Phys Chem B 101:6661–6664.  https://doi.org/10.1021/jp971656q CrossRefGoogle Scholar
  24. 24.
    Wijesundera RP (2010) Fabrication of the CuO/Cu2O heterojunction using an electrodeposition technique for solar cell applications. Semicond Sci Technol 25:045015.  https://doi.org/10.1088/0268-1242/25/4/045015 CrossRefGoogle Scholar
  25. 25.
    Anandan S, Wen X, Yang S (2005) Room temperature growth of CuO nanorod arrays on copper and their application as a cathode in dye-sensitized solar cells. Mater Chem Phys 93:35–40.  https://doi.org/10.1016/j.matchemphys.2005.02.002 CrossRefGoogle Scholar
  26. 26.
    Sun H, Harms K, Sundermeyer J et al (2004) Aerobic oxidation of 2,3,6-trimethylphenol to trimethyl-1,4-benzoquinone with copper(II) chloride as catalyst in ionic liquid and structure of the active species. J Am Chem Soc 126:9550–9551CrossRefPubMedGoogle Scholar
  27. 27.
    Rubilar O, Rai M, Tortella G et al (2013) Biogenic nanoparticles: copper, copper oxides, copper sulphides, complex copper nanostructures and their applications. Biotechnol Lett 35:1365–1375CrossRefPubMedGoogle Scholar
  28. 28.
    Boselli M, Colombo V, Ghedini E et al (2014) Schlieren high-speed imaging of a nanosecond pulsed atmospheric pressure non-equilibrium plasma jet. Plasma Chem Plasma Process 34:853–869.  https://doi.org/10.1007/s11090-014-9537-1 CrossRefGoogle Scholar
  29. 29.
    Colombo V, Fabiani D, Focarete ML et al (2014) Atmospheric pressure non-equilibrium plasma treatment to improve the electrospinnability of poly(L-Lactic Acid) polymeric solution. Plasma Process Polym 11:247–255.  https://doi.org/10.1002/ppap.201300141 CrossRefGoogle Scholar
  30. 30.
    Liguori A, Pollicino A, Stancampiano A et al (2016) Deposition of plasma-polymerized polyacrylic acid coatings by a non-equilibrium atmospheric pressure nanopulsed plasma jet. Plasma Process Polym 13:375–386.  https://doi.org/10.1002/ppap.201500080 CrossRefGoogle Scholar
  31. 31.
    Liguori A, Traldi E, Toccaceli E et al (2015) Co-deposition of plasma-polymerized polyacrylic acid and silver nanoparticles for the production of nanocomposite coatings using a non-equilibrium atmospheric pressure plasma jet. Plasma Process Polym.  https://doi.org/10.1002/ppap.201500143 CrossRefGoogle Scholar
  32. 32.
    Laurita R, Barbieri D, Gherardi M et al (2015) Chemical analysis of reactive species and antimicrobial activity of water treated by nanosecond pulsed DBD air plasma. Clin Plasma Med 3:53–61.  https://doi.org/10.1016/j.cpme.2015.10.001 CrossRefGoogle Scholar
  33. 33.
    Faita G, Fiori G, Salvadore D (1975) Copper behaviour in acid and alkaline brines—I kinetics of anodic dissolution in 0.5 M NaCl and free-corrosion rates in the presence of oxygen. Corros Sci 15:383–392CrossRefGoogle Scholar
  34. 34.
    Yuan B, Wang C, Li L, Chen S (2009) Real time observation of the anodic dissolution of copper in NaCl solution with the digital holography. Electrochem Commun 11:1373–1376CrossRefGoogle Scholar
  35. 35.
    Kear G, Barker BD, Walsh FC (2004) Electrochemical corrosion of unalloyed copper in chloride media—a critical review. Corros Sci 46:109–135CrossRefGoogle Scholar
  36. 36.
    Ethiraj AS, Kang DJ (2012) Synthesis and characterization of CuO nanowires by a simple wet chemical method. Nanoscale Res Lett 7:70.  https://doi.org/10.1186/1556-276X-7-70 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Balamurugan B, Mehta BR (2001) Optical and structural properties of nanocrystalline copper oxide thin films prepared by activated reactive evaporation. Thin Solid Films 396:90–96.  https://doi.org/10.1016/S0040-6090(01)01216-0 CrossRefGoogle Scholar
  38. 38.
    Sun S, Zhang X, Sun Y et al (2013) Facile water-assisted synthesis of cupric oxide nanourchins and their application as nonenzymatic glucose biosensor. ACS Appl Mater Interfaces 5:4429–4437.  https://doi.org/10.1021/am400858j CrossRefPubMedGoogle Scholar
  39. 39.
    Borgohain K, Singh J, Rama Rao M et al (2000) Quantum size effects in CuO nanoparticles. Phys Rev B 61:11093–11096.  https://doi.org/10.1103/PhysRevB.61.11093 CrossRefGoogle Scholar
  40. 40.
    Vasquez RP, Foote MC, Hunt BD (1989) Reaction of nonaqueous halogen solutions with YBa2Cu3O7−x. J Appl Phys 66:4866–4877.  https://doi.org/10.1063/1.343805 CrossRefGoogle Scholar
  41. 41.
    Krylova V, Andrulevicius M (2009) Optical, XPS and XRD studies of semiconducting copper sulfide layers on a polyamide film. Int J Photoenergy.  https://doi.org/10.1155/2009/304308 CrossRefGoogle Scholar
  42. 42.
    Drogowska M, Brossard L, Menard H (1987) Anodic copper dissolution in the presence of Cl-ions at pH 12. Corrosion 43:549–552.  https://doi.org/10.5006/1.3583899 CrossRefGoogle Scholar
  43. 43.
    Engelbrekt C, Malcho P, Andersen J et al (2014) Selective synthesis of clinoatacamite Cu2(OH)3Cl and tenorite CuO nanoparticles by pH control. J Nanopart Res 16:2561.  https://doi.org/10.1007/s11051-014-2562-4 CrossRefGoogle Scholar
  44. 44.
    Wang W, Liu Z, Liu Y et al (2003) A simple wet-chemical synthesis and characterization of CuO nanorods. Appl Phys A Mater Sci Process 76:417–420.  https://doi.org/10.1007/s00339-002-1514-5 CrossRefGoogle Scholar
  45. 45.
    Cudennec Y, Lecerf A (2003) The transformation of Cu(OH)2 into CuO, revisited. Solid State Sci 5:1471–1474.  https://doi.org/10.1016/j.solidstatesciences.2003.09.009 CrossRefGoogle Scholar
  46. 46.
    Velusamy T, Liguori A, Macias-Montero M et al (2017) Ultra-small CuO nanoparticles with tailored energy-band diagram synthesized by a hybrid plasma–liquid process. Press Plasma Process Polym.  https://doi.org/10.1002/ppap.201100001 CrossRefGoogle Scholar
  47. 47.
    Guo TX, Zhao Y, Ma SC, Liu ST (2012) Decomposition characteristics of hydrogen peroxide in sodium hydroxide solution. Adv Mater Res 610:359–362.  https://doi.org/10.4028/www.scientific.net/AMR.610-613.359 CrossRefGoogle Scholar
  48. 48.
    Richardson HW (1997) Handbook of copper compounds and applications. CRC PressGoogle Scholar
  49. 49.
    Witzke M, Rumbach P, Go DB, Sankaran RM (2012) Evidence for the electrolysis of water by atmospheric-pressure plasmas formed at the surface of aqueous solutions. J Phys D Appl Phys 45:442001.  https://doi.org/10.1088/0022-3727/45/44/442001 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Anna Liguori
    • 1
  • Tommaso Gallingani
    • 2
  • Dilli Babu Padmanaban
    • 3
  • Romolo Laurita
    • 2
  • Tamilselvan Velusamy
    • 3
  • Gunisha Jain
    • 3
  • Manuel Macias-Montero
    • 3
  • Davide Mariotti
    • 3
  • Matteo Gherardi
    • 1
    • 2
  1. 1.Advanced Mechanics and Materials, Interdepartmental Center for Industrial Research (AMM-ICIR)Alma Mater Studiorum-Università di BolognaBolognaItaly
  2. 2.Department of Industrial Engineering (DIN)Alma Mater Studiorum-Università di BolognaBolognaItaly
  3. 3.Nanotechnology and Integrated Bio-Engineering Centre (NIBEC)Ulster UniversityNewtownabbey, Co AntrimNorthern Ireland, UK

Personalised recommendations