Skip to main content

Advertisement

Log in

Diagnostics of Plasma Behavior and TiO2 Properties Based on DBD/TiO2 Hybrid System

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Plasma catalysis is gaining increasing interest in environmental and energy applications, such as the destruction of gas pollutants and hydrocarbon conversion. In order to further improve the application of plasma catalysis, it is crucial to understand the fundamental mechanisms, especially the mutual interaction between plasma and catalyst. In this paper, a parallel-plate dielectric barrier discharge (DBD) reactor is developed to investigate the plasma behavior and TiO2 properties in the plasma/catalytic hybrid system. The introduction of TiO2 thin film coated on the dielectric improves the discharge intensity, which significantly contributes to the enhancement of reactive species and charges. The energy efficiency of generating ozone in DBD/TiO2 system has been approximately raised by 38% compared to pure DBD when the applied voltage reaches 13 kV. It is fortunately found that the discharge does not change the crystal structure of the TiO2, but the band gap increases from 3.13 to 3.39 eV, which has been proved to enhance the oxidizability of TiO2 in the degradation of methyl orange experiment under UV light. The FTIR and XPS spectra also demonstrate that N element is doped into the structure of TiO2. These results successfully illustrate the plasma behavior and catalyst properties in plasma/catalysis hybrid system and provide reference for the optimization of the plasma catalysis process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Mei D, He YL, Liu S, Yan J, Tu X (2016) Plasma Process Polym 13:544–556

    Article  CAS  Google Scholar 

  2. Tu X, Gallon HJ, Twigg MV, Gorry PA, Whitehead JC (2011) J Phys D Appl Phys 44:274007

    Article  CAS  Google Scholar 

  3. Mei D, Zhu X, Wu C, Ashford B, Williams PT, Tu X (2016) Appl Catal B 182:525–532

    Article  CAS  Google Scholar 

  4. Zhu X, Tu X, Mei D, Zheng C, Zhou J, Gao X, Luo Z, Ni M, Cen K (2016) Chemosphere 155:9–17

    Article  CAS  PubMed  Google Scholar 

  5. Zeng Y, Zhu X, Mei D, Ashford B, Tu X (2015) Catal Today 256:80–87

    Article  CAS  Google Scholar 

  6. Wang TC, Lu N, Li J, Wu Y (2011) Environ Sci Technol 45:9301–9307

    Article  CAS  PubMed  Google Scholar 

  7. Futamura S, Einaga H, Kabashima H, Hwan LY (2004) Catal Today 89:89–95

    Article  CAS  Google Scholar 

  8. Lu N, Bao X, Jiang N, Shang K, Li J, Wu Y (2017) Top Catal 60:855–868

    Article  CAS  Google Scholar 

  9. Malik MA (2003) Plasma Sources Sci Technol 8:5037–5043

    Google Scholar 

  10. Mei D, Zhu X, He YL, Yan JD, Tu X (2015) Plasma Sources Sci Technol 24:015011

    Article  CAS  Google Scholar 

  11. Neyts EC, Ostrikov K, Sunkara MK, Bogaerts A (2015) Chem Rev 115:13408–13446

    Article  CAS  PubMed  Google Scholar 

  12. Whitehead JC (2016) J Phys D Appl Phys 49:243001

    Article  CAS  Google Scholar 

  13. Snoeckx R, Bogaerts A (2017) Chem Soc Rev 46:5805–5863

    Article  CAS  PubMed  Google Scholar 

  14. Bogaerts A, Neyts E (2018) ACS Energy Lett 3:1013–1027

    Article  CAS  Google Scholar 

  15. Peng P, Li Y, Cheng Y, Deng S, Chen P, Ruan R (2016) Plasma Chem Plasma Process 36:1201–1210

    Article  CAS  Google Scholar 

  16. Wu J, Huang Y, Xia Q, Li Z (2013) Plasma Chem Plasma Process 33:1073–1082

    Article  CAS  Google Scholar 

  17. Li Y, Fan Z, Shi J, Liu Z, Zhou J, Shangguan W (2014) Plasma Chem Plasma Process 34:801–810

    Article  CAS  Google Scholar 

  18. Neyts EC, Bogaerts A (2014) J Phys D Appl Phys 47:224010

    Article  CAS  Google Scholar 

  19. Tu X, Gallon HJ, Whitehead JC (2011) J Phys D Appl Phys 44:482003

    Article  CAS  Google Scholar 

  20. Van Laer K, Bogaerts A (2016) Plasma Sources Sci Technol 25:015002

    Article  CAS  Google Scholar 

  21. Van Laer K, Bogaerts A (2017) Plasma Process Polym 14:e1600129

    Article  CAS  Google Scholar 

  22. Van Laer K, Bogaerts A (2017) Plasma Sources Sci Technol 26:085007

    Article  Google Scholar 

  23. Kruszelnicki J, Engeling KW, Foster JE, Xiong Z, Kushner MJ (2017) J Phys D Appl Phys 50:025203

    Article  CAS  Google Scholar 

  24. Kim HH, Teramoto Y, Ogata A (2016) J Phys D Appl Phys 49:459501

    Article  CAS  Google Scholar 

  25. Butterworth T, Allen RWK (2017) Plasma Sources Sci Technol 26:065008

    Article  Google Scholar 

  26. Wang W, Kim HH, Van Laer K, Bogaerts A (2018) Chem Eng J 334:2467–2479

    Article  CAS  Google Scholar 

  27. Roland U, Holzer F, Kopinke FD (2005) Appl Catal B Environ 58:217

    Article  CAS  Google Scholar 

  28. Holzer F, Kopinke FD, Roland U (2005) Plasma Chem Plasma Process 25:595

    Article  CAS  Google Scholar 

  29. Hensel K, Martisovits V, Machala Z, Janda M, Lestinsky M, Tardiveau P, Mizuno A (2007) Plasma Process Polym 4:682

    Article  CAS  Google Scholar 

  30. Zhang Y-R, Van Laer K, Neyts EC, Bogaerts A (2016) Appl Catal B Environ 185:56–67

    Article  CAS  Google Scholar 

  31. Zhang Y-R, Neyts EC, Bogaerts A (2016) J Phys Chem C 120:25923–25934

    Article  CAS  Google Scholar 

  32. Zhang Q-Z, Bogaerts A (2018) Plasma Sources Sci Technol 27:035009

    Article  Google Scholar 

  33. Kim HH, Ogata A, Futamura S (2008) Appl Catal B 79:356–367

    Article  CAS  Google Scholar 

  34. Guaitella O, Thevenet F, Puzenat E, Guillard C, Rousseau A (2008) Appl Catal B 80:296–305

    Article  CAS  Google Scholar 

  35. Liu C, Wang J, Yu K, Eliasson B, Xia Q, Xue B, Zhang Y (2002) J Electrostat 54:149–158

    Article  CAS  Google Scholar 

  36. Guo YF, Ye DQ, Chen KF, He JC, Chen WL (2006) J Mol Catal A 245:93–100

    Article  CAS  Google Scholar 

  37. Pylinina AI, Mikhalenko II (2013) Theor Exp Chem 49:65–69

    Article  CAS  Google Scholar 

  38. Gallon HJ, Tu X, Twigg MV, Whitehead JC (2011) Appl Catal B 106:616–620

    Article  CAS  Google Scholar 

  39. Liu S, Neiger M (2003) J Phys D Appl Phys 36:3144–3150

    Article  CAS  Google Scholar 

  40. Birdsall CM, Jenkins AC, Spadinger E (1952) Anal Chem 24:662–664

    Article  CAS  Google Scholar 

  41. Borchert H, Shevchenko EV, Robert A, Mekis I, Kornowski A, Grübel G, Weller H (2005) Langmuir 21:1931–1936

    Article  CAS  PubMed  Google Scholar 

  42. Guaitella O, Thevenet F, Guillard C, Rousseau A (2006) J Phys D Appl Phys 39:2964–2972

    Article  CAS  Google Scholar 

  43. Ozkan A, Dufour T, Silva T, Britun N, Snyders R, Bogaerts A, Reniers F (2106) Plasma Sources Sci Technol 25:025013

    Article  Google Scholar 

  44. Dong L, Yin Z, Li X, Wang L (2003) Plasma Sources Sci Technol 12:380–388

    Article  Google Scholar 

  45. Nassar H, Pellerin S, Musio K, Martinie O, Pellerin N (2004) J Phys D Appl Phys 37:1904–1916

    Article  CAS  Google Scholar 

  46. Ohsaka T, Izumi F, Fujiki Y (1978) J Raman Spectrosc 7:321

    Article  Google Scholar 

  47. Zhang YH, Chan CK, Porter JF, Guo W (1998) J Mater Res 13:2602–2609

    Article  CAS  Google Scholar 

  48. Huang CM, Chen LC, Cheng KW, Pan GT (2007) J Mol Catal A 261:218–224

    Article  CAS  Google Scholar 

  49. Sing KSW, Everett DH, Haul RAW, Moscow L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Pure Appl Chem 57:603–619

    Article  CAS  Google Scholar 

  50. Dumeignil F, Sato K, Imamura M, Matsubayashi N, Payen E, Shimada H (2003) Appl Catal A 241:319–329

    Article  CAS  Google Scholar 

  51. Kim DS, Han SJ, Kwak SY (2007) J Colloid Interface Sci 316:85–91

    Article  CAS  PubMed  Google Scholar 

  52. Zheng ZK, Huang BB, Lu JB, Qin XY, Zhang XY, Dai Y (2011) Chem Eur J 17:15032

    Article  CAS  PubMed  Google Scholar 

  53. Wang XL, He HL, Chen Y, Zhao JQ, Zhang XY (2012) Appl Surf Sci 258:5863

    Article  CAS  Google Scholar 

  54. Choi Y, Umebayashi T, Yoshikawa M (2004) J Mater Sci 39:1837–1839

    Article  CAS  Google Scholar 

  55. Li G, Chen L, Dimitrijevic NM, Gray KA (2008) Chem Phys Lett 451:75–79

    Article  CAS  Google Scholar 

  56. Sakthivel S, Janczarek M, Kisch H (2004) J Phys Chem B 108:19384–19387

    Article  CAS  Google Scholar 

  57. Wang J, Tafen DN, Lewis JP, Hong Z, Manivannan A, Zhi M, Li M, Wu N (2009) J Am Chem Soc 131:12290–12297

    Article  CAS  PubMed  Google Scholar 

  58. Chen X, Burda C (2004) J Phys Chem B 108:15446–15449

    Article  CAS  Google Scholar 

  59. Gyorgy E, Perez-Pino A, Serra P, Morenza JL (2003) Surf Coat Technol 173:265

    Article  CAS  Google Scholar 

  60. Xu W, Raftery D (2001) J Phys Chem B 105:4343

    Article  CAS  Google Scholar 

  61. Kobayakawa K, Murakami Y, Sato Y (2005) J Photochem Photobiol, A 170:177–179

    Article  CAS  Google Scholar 

  62. López R, Gómez R (2012) J Sol-Gel Sci Technol 61:1–7

    Article  CAS  Google Scholar 

  63. Monticone S, Tufeu R, Kanaev AV, Scolan E, Sanchez C (2000) Appl Surf Sci 162:565–570

    Article  Google Scholar 

  64. Houas A, Lachheb H, Ksibi M, Elaloui E, Guillard C, Hermann JM (2001) Appl Catal B Environ 31:145

    Article  CAS  Google Scholar 

  65. Bianco-Prevot A, Baiocchi C, Brussino MC, Pramauro E, Savarino P, Augugliaro V, Marci G, Palmisano L (2001) Environ Sci Technol 35:971

    Article  CAS  Google Scholar 

  66. Tanaka K, Padermpole K, Hisanaga T (2000) Water Res 34:327

    Article  CAS  Google Scholar 

  67. Galindo C, Jacques P, Kalt A (2000) J Photochem Photobiol A Chem 130:35

    Article  CAS  Google Scholar 

  68. Konstantinou IK, Albanis TA (2004) Appl Catal B 49:1–14

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the Joint Funds of the National Natural Science Foundation of China under Grant No. U1462105.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, N., Hui, Y., Shang, K. et al. Diagnostics of Plasma Behavior and TiO2 Properties Based on DBD/TiO2 Hybrid System. Plasma Chem Plasma Process 38, 1239–1258 (2018). https://doi.org/10.1007/s11090-018-9919-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-018-9919-x

Keywords

Navigation