Skip to main content

Microwave Plasma Jet in Water: Characterization and Feasibility to Wastewater Treatment

Abstract

Plasma–liquid interactions have gained escalated interests over the last decade due to their potentials in many applications. The simultaneous generation of physicochemical phenomena of interest promotes itself to the top of the promising technologies for liquid processing. Here, we study the physics of a microwave plasma jet (MWPJ) submerged into water and its feasibility to wastewater treatment. We investigate the plasma and bubble dynamics using high-speed imaging. The effects of the argon flow rate, additive gas, and microwave power on the dynamics are examined highlighting the retreating behaviors of plasma channels due to the losses of electrons and power caused by nearby water surface. The addition of N2 (< 5%) to Ar flow results in an oscillatory motion of the foremost edge of the plasma channel. We characterize the submerged MWPJ using a time- and space-averaged optical emission spectroscopy. We found the dominant OH (A–X) molecular band and atomic Ar lines with pure Ar flow indicating the effective dissociation of water. Meanwhile, the addition of N2 leads to an intense emission of NH (A–X) molecular band. Finally, we assess the submerged MWPJ as a viable method for water purification based on the degradation of methylene blue (popular model compound). We find a significant improvement in the efficiency by adding 1–3% of N2 to the Ar, which should be attributed to a combined effects of NH radicals, having high redox potential, and the backward reactions of H2O2 to form OH radicals with NO and NO2.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. Locke BR, Shih KY (2011) Review of the methods to form hydrogen peroxide in electrical discharge plasma with liquid water. Plasma Sources Sci Technol 20(3):034006

    Article  Google Scholar 

  2. Lebedev YA (2017) Microwave discharges in liquid dielectrics. Plasma Phys Rep 43(6):685

    Article  Google Scholar 

  3. Foster JE (2017) Plasma-based water purification: challenges and prospects for the future. Phys Plasmas 24(5):055501

    Article  CAS  Google Scholar 

  4. Ceccato PH, Guaitella O, Le Gloahec MR, Rousseau A (2010) Time-resolved nanosecond imaging of the propagation of a corona-like plasma discharge in water at positive applied voltage polarity. J Phys D Appl Phys 43(17):175202

    Article  CAS  Google Scholar 

  5. Hamdan A, Cha MS (2016) Low-dielectric layer increases nanosecond electric discharges in distilled water. AIP Adv 6(10):105112

    Article  Google Scholar 

  6. Marinov I, Starikovskaia S, Rousseau A (2014) Dynamics of plasma evolution in a nanosecond underwater discharge. J Phys D Appl Phys 47(22):224017

    Article  CAS  Google Scholar 

  7. Laurita R, Barbieri D, Gherardi M, Colombo V, Lukes P (2015) Chemical analysis of reactive species and antimicrobial activity of water treated by nanosecond pulsed DBD air plasma. Clin Plasma Med 3(2):53–61

    Article  Google Scholar 

  8. Tian W, Kushner MJ (2014) Atmospheric pressure dielectric barrier discharges interacting with liquid covered tissue. J Phys D Appl Phys 47(16):165201

    Article  CAS  Google Scholar 

  9. Robert E, Darny T, Dozias S, Iseni S, Pouvesle JM (2015) New insights on the propagation of pulsed atmospheric plasma streams: from single jet to multi jet arrays. Phys Plasmas 22(12):122007

    Article  CAS  Google Scholar 

  10. Surov AV, Popov SD, Popov VE, Subbotin DI, Serba EO, Spodobin VA, Nakonechny GV, Pavlov AV (2017) Multi-gas AC plasma torches for gasification of organic substances. Fuel 203:1007–1014

    Article  CAS  Google Scholar 

  11. Chang JS (2001) Recent development of plasma pollution control technology: a critical review. Sci Technol Adv Mater 2(3–4):571–576

    Article  CAS  Google Scholar 

  12. Liu JL, Park HW, Hamdan A, Cha MS (2018) In-liquid arc plasma jet and its application to phenol degradation. J Phys D Appl Phys 51:114005

    Article  CAS  Google Scholar 

  13. Liedtke KR, Bekeschus S, Kaeding A, Hackbarth C, Kuehn JP, Heidecke CD, Bernstorff W, Woedtke T, Partecke LI (2017) Non-thermal plasma-treated solution demonstrates antitumor activity against pancreatic cancer cells in vitro and in vivo. Sci Rep 7(1):8319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tanaka H, Ishikawa K, Mizuno M, Toyokuni S, Kajiyama H, Kikkawa F, Metelmann HR, Hori M (2017) State of the art in medical applications using non-thermal atmospheric pressure plasma. Rev Mod Plasma Phys 1(1):3

    Article  Google Scholar 

  15. Magureanu M, Mandache NB, Parvulescu VI (2015) Degradation of pharmaceutical compounds in water by non-thermal plasma treatment. Water Res 81:124–136

    Article  CAS  PubMed  Google Scholar 

  16. Hamdan A, Marinov I, Rousseau A, Belmonte T (2013) Time-resolved imaging of nanosecond-pulsed micro-discharges in heptane. J Phys D Appl Phys 47(5):055203

    Article  CAS  Google Scholar 

  17. Hamdan A, Cha MS (2015) Ignition modes of nanosecond discharge with bubbles in distilled water. J Phys D Appl Phys 48(40):405206

    Article  CAS  Google Scholar 

  18. Hamdan A, Cha MS (2016) The effects of gaseous bubble composition and gap distance on the characteristics of nanosecond discharges in distilled water. J Phys D Appl Phys 49(24):245203

    Article  CAS  Google Scholar 

  19. Hamdan A, Noel C, Kosior F, Henrion G, Belmonte T (2013) Impacts created on various materials by micro-discharges in heptane: influence of the dissipated charge. J Appl Phys 113(4):043301

    Article  CAS  Google Scholar 

  20. Hamdan A, Kabbara H, Noël C, Ghanbaja J, Redjaimia A, Belmonte T (2018) Synthesis of two-dimensional lead sheets by spark discharge in liquid nitrogen. Particuology. https://doi.org/10.1016/j.partic.2017.10.012

    Article  Google Scholar 

  21. Belmonte T, Hamdan A, Kosior F, Noël C, Henrion G (2014) Interaction of discharges with electrode surfaces in dielectric liquids: application to nanoparticle synthesis. J Phys D Appl Phys 47(22):224016

    Article  CAS  Google Scholar 

  22. Tu Y, Xian Y, Yang Y, Lu X, Pan Y (2017) Time-resolved imaging of electrical discharge development in multiple bubbles immersed in water. Plasma Process Polym 14(10):1600242

    Article  CAS  Google Scholar 

  23. Hamdan A, Cha MS (2016) Nanosecond discharge in bubbled liquid n-heptane: effects of gas composition and water addition. IEEE Trans Plasma Sci 44(12):2988–2994

    Article  Google Scholar 

  24. Zhang X, Cha MS (2015) The reformation of liquid hydrocarbons in an aqueous discharge reactor. J Phys D Appl Phys 48(21):215201

    Article  CAS  Google Scholar 

  25. Dai XJ, Corr CS, Ponraj SB, Maniruzzaman M, Ambujakshan AT, Chen Z, Kviz L, Lovett R, Rajmohan GD, de Celis DR, Wright ML (2016) Efficient and selectable production of reactive species using a nanosecond pulsed discharge in gas bubbles in liquid. Plasma Process Polym 13(3):306–310

    Article  CAS  Google Scholar 

  26. Tian W, Tachibana K, Kushner MJ (2013) Plasmas sustained in bubbles in water: optical emission and excitation mechanisms. J Phys D Appl Phys 47(5):055202

    Article  CAS  Google Scholar 

  27. Barkhudarov EM, Kossyi IA, Misakyan MA, Taktakishvili IM (2012) New microwave plasma source in water. In: Lebedev YA (ed) Microwave discharges: fundamentals and applications. Yanus-K, Moscow, p 43

    Google Scholar 

  28. García MC, Mora M, Esquivel D, Foster JE, Rodero A, Jiménez-Sanchidrián C, Romero-Salguero FJ (2017) Microwave atmospheric pressure plasma jets for wastewater treatment: degradation of methylene blue as a model dye. Chemosphere 180:239–246

    Article  CAS  PubMed  Google Scholar 

  29. Cardoso RP, Belmonte T, Keravec P, Kosior F, Henrion G (2007) Influence of impurities on the temperature of an atmospheric helium plasma in microwave resonant cavity. J Phys D Appl Phys 40(5):1394

    Article  CAS  Google Scholar 

  30. Bravo JA, Rincón R, Muñoz J, Sánchez A, Calzada MD (2015) Spectroscopic characterization of argon–nitrogen surface-wave discharges in dielectric tubes at atmospheric pressure. Plasma Chem Plasma Process 35(6):993–1014

    Article  CAS  Google Scholar 

  31. Chen CJ, Li SZ, Zhang J, Liu D (2017) Temporally resolved diagnosis of an atmospheric-pressure pulse-modulated argon surface wave plasma by optical emission spectroscopy. J Phys D Appl Phys 51(2):025201

    Article  CAS  Google Scholar 

  32. Itikawa Y (2006) Cross sections for electron collisions with nitrogen molecules. J Phys Chem Ref Data 35(1):31–53

    Article  CAS  Google Scholar 

  33. Bogaerts A (2009) Hybrid Monte Carlo—fluid model for studying the effects of nitrogen addition to argon glow discharges. Spectrochim Acta Part B 64(2):126–140

    Article  CAS  Google Scholar 

  34. Henriques J, Tatarova E, Guerra V, Ferreira CM (2002) Wave driven N2–Ar discharge. I. Self-consistent theoretical model. J Appl Phys 91(9):5622–5631

    Article  CAS  Google Scholar 

  35. Van Helden JH, Van den Oever PJ, Kessels WMM, Van de Sanden MCM, Schram DC, Engeln R (2007) Production mechanisms of NH and NH2 radicals in N2–H2 plasmas. J Phys Chem A 111(45):11460–11472

    Article  CAS  PubMed  Google Scholar 

  36. Jonsson M, Lind J, Merényi G, Eriksen TE (1995) N–H bond dissociation energies, reduction potentials and pKas of multisubstituted anilines and aniline radical cations. J Chem Soc Perkin Trans 2(1):61–65

    Article  Google Scholar 

  37. Benetoli LODB, Cadorin BM, Postiglione CDS, Souza IGD, Debacher NA (2011) Effect of temperature on methylene blue decolorization in aqueous medium in electrical discharge plasma reactor. J Braz Chem Soc 22(9):1669–1678

    Article  CAS  Google Scholar 

  38. Moussa D, Doubla A, Kamgang-Youbi G, Brisset JL (2007) Postdischarge long life reactive intermediates involved in the plasma chemical degradation of an azoic dye. IEEE Trans Plasma Sci 35(2):444–453

    Article  CAS  Google Scholar 

  39. Stará Z, Krčma F, Nejezchleb M, Skalný JD (2009) Organic dye decomposition by DC diaphragm discharge in water: effect of solution properties on dye removal. Desalination 239(1–3):283–294

    Article  CAS  Google Scholar 

  40. Maehara T, Miyamoto I, Kurokawa K, Hashimoto Y, Iwamae A, Kuramoto M, Yamashita H, Mukasa S, Toyota H, Nomura S, Kawashima A (2008) Degradation of methylene blue by RF plasma in water. Plasma Chem Plasma Process 28(4):467–482

    Article  CAS  Google Scholar 

  41. Ishijima T, Hotta H, Sugai H, Sato M (2007) Multibubble plasma production and solvent decomposition in water by slot-excited microwave discharge. Appl Phys Lett 91(12):121501

    Article  CAS  Google Scholar 

  42. Malik MA, Ghaffar A, Ahmed K (2002) Synergistic effect of pulsed corona discharges and ozonation on decolourization of methylene blue in water. Plasma Sources Sci Technol 11(3):236

    Article  CAS  Google Scholar 

  43. Ikoma S, Satoh K, Itoh H (2009) Decomposition of methylene blue in an aqueous solution using a pulsed-discharge plasma at atmospheric pressure. IEEJ Trans Fundam Mater 129:237–244

    Article  Google Scholar 

Download references

Acknowledgements

The research reported in this publication was supported by funding from King Abdullah University of Science and Technology (KAUST), under Award Number BAS/1/1384-01-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Hamdan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hamdan, A., Liu, JL. & Cha, M.S. Microwave Plasma Jet in Water: Characterization and Feasibility to Wastewater Treatment. Plasma Chem Plasma Process 38, 1003–1020 (2018). https://doi.org/10.1007/s11090-018-9918-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-018-9918-y

Keywords

  • Microwave plasma
  • Plasma in water
  • Water treatment
  • High-speed imaging
  • Optical emission spectroscopy