Near-Surface Structure of Plasma Polymer Films Affects Surface Behavior in Water and its Interaction with Proteins

Abstract

Using low pressure plasma polymerization, nano-scaled oxygen-rich plasma polymer films (CO) were deposited onto pristine silicon wafers as well as on nitrogen-containing plasma polymer (CN) model surfaces. We investigate the influence of the nature of the substrate as well as a potential sub-surface effect emerging from the buried CO/CN interface, just nanometers below the surface. X-ray Photoelectron Spectroscopy and Time-of-Flight Secondary Ion Mass Spectrometry revealed two important phenomena that occurred during the deposition of the terminal CO layer: (1) a strong degree of oxidation, already for 1 nm nominal thickness, and (2) a gradual transition in chemical composition between the two layers, clearly indicating that effectively a vertical chemical gradient results, even when a two-step coating process was applied. Such terminal gradient film structures were used to study film stability in aqueous environments. Molecular rearrangements were scrutinized in the top-surface in contact with water and we found that the top-surface chemistry and wetting properties of the oxygen-rich termination layer matched those of thick CO reference coatings. Nevertheless, the adsorption of green fluorescent protein (GFP) was observed to be sensitive to the CO terminal layer thickness. Namely, an enhanced protein adsorption was observed for 1–2 nm thick CO layers on CN, whereas a significantly reduced protein adsorption was seen on ≥ 3 nm thick CO terminal layers. We conclude that both, surface and sub-surface conditions significantly affect protein adsorption as opposed to the traditional consideration of surface properties alone.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Gunkel G, Huck WTS (2013) Cooperative adsorption of lipoprotein phospholipids, triglycerides, and cholesteryl esters are a key factor in nonspecific adsorption from blood plasma to antifouling polymer surfaces. J Am Chem Soc 135:7047–7052

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    Gunkel G, Weinhart M, Becherer T, Haag R, Huck WTS (2011) Effect of polymer brush architecture on antibiofouling properties. Biomacromol 12:4169–4172

    Article  CAS  Google Scholar 

  3. 3.

    Banerjee I, Pangule RC, Kane RS (2011) Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv Mater 23:690–718

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Tan CK, Blackwood DJ (2003) Corrosion protection by multilayered conducting polymer coatings. Corros Sci 45:545–557

    Article  CAS  Google Scholar 

  5. 5.

    Sorensen PA, Kiil S, Dam-Johansen K, Weinell CE (2009) Anticorrosive coatings: a review. J Coat Technol Res 6:135–176

    Article  CAS  Google Scholar 

  6. 6.

    Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105:1103–1170

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Makhneva E, Manakov A, Skladal P, Zajickova L (2016) Development of effective QCM biosensors by cyclopropylamine plasma polymerization and antibody immobilization using cross-linking reactions. Surf Coat Technol 290:116–123

    Article  CAS  Google Scholar 

  8. 8.

    Altinisik A, Yurdakoc K (2016) Chitosan-/PVA-coated magnetic nanoparticles for Cu (II) ions adsorption. Desalin Water Treat 57:18463–18474

    Article  CAS  Google Scholar 

  9. 9.

    Vandenbosche M, Derozier D, Casetta M, Jimenez M, Bellayer S, Traisnel M (2015) An innovative method to functionalize textiles for remediation of polluted media. Appl Surf Sci 330:111–117

    Article  CAS  Google Scholar 

  10. 10.

    Jimenez M, Duquesne S, Bourbigot S (2006) Characterization of the performance of an intumescent fire protective coating. Surf Coat Technol 201:979–987

    Article  CAS  Google Scholar 

  11. 11.

    Jimenez M, Lesaffre N, Bellayer S, Dupretz R, Vandenbossche M, Duquesne S, Bourbigot S (2015) Novel flame retardant flexible polyurethane foam: plasma induced graft-polymerization of phosphonates. RSC Adv. 5:63853–63865

    Article  CAS  Google Scholar 

  12. 12.

    Schlenoff JB (2014) Zwitteration: coating surfaces with zwitterionic functionality to reduce nonspecific adsorption. Langmuir 30:9625–9636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Lau KHA, Sileika TS, Park SH, Sousa AML, Burch P, Szleifer I, Messersmith PB (2015) Molecular design of antifouling polymer brushes using sequence-specific peptoids. Adv Mater Interfaces 2:1400225

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Yasuda H, Matsuzawa Y (2005) Economical advantages of low-pressure plasma polymerization coating. Plasma Process Polym 2:507–512

    Article  CAS  Google Scholar 

  15. 15.

    Ligot S, Bousser E, Cossement D, Klemberg-Sapieha J, Viville P, Dubois P, Snyders R (2015) Correlation between mechanical properties and cross-linking degree of ethyl lactate plasma polymer films. Plasma Process Polym 12:508–518

    Article  CAS  Google Scholar 

  16. 16.

    Rupper P, Vandenbossche M, Bernard L, Hegemann D, Heuberger M (2017) Composition and stability of plasma polymer films exhibiting vertical chemical gradients. Langmuir 33:2340–2352

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Hegemann D (2015) Controlling the nanostructure and stability of a-C:H: N plasma polymers. Thin Solid Films 581:2–6

    Article  CAS  Google Scholar 

  18. 18.

    Hegemann D, Hanselmann B, Guimond S, Fortunato G, Giraud M-N, Guex AG (2014) Considering the degradation effects of amino-functional plasma polymer coatings for biomedical application. Surf Coat Technol 255:90–95

    Article  CAS  Google Scholar 

  19. 19.

    Hegemann D, Körner E, Blanchard NE, Drabik M, Guimond S (2012) Densification of functional plasma polymers by momentum transfer during film growth. Appl Phys Lett 101:211603

    Article  CAS  Google Scholar 

  20. 20.

    Hegemann D, Hanselmann B, Blanchard N, Amberg M (2014) Plasma-substrate interaction during plasma deposition on polymers. Contrib Plasma Phys 54:162–169

    Article  CAS  Google Scholar 

  21. 21.

    Vandenbossche M, Butron Garcia M-I, Schütz U, Rupper P, Amberg M, Hegemann D (2016) Initial growth of functional plasma polymer nanofilms. Plasma Chem Plasma Process 36:667–677

    Article  CAS  Google Scholar 

  22. 22.

    Hegemann D, Lorusso E, Butron Garcia MI, Blanchard NE, Rupper P, Favia P, Heuberger M, Vandenbossche M (2016) Suppression of hydrophobic recovery by plasma polymer films with vertical chemical gradients. Langmuir 32:651–654

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    Dorst J, Vandenbossche M, Amberg M, Bernard L, Rupper P, Weltmann K-D, Fricke K, Hegemann D (2017) Improving the stability of amino-containing plasma polymer films in aqueous environments. Langmuir 33:10736–10744

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    Li L, Dai XJ, Xu HS, Zhao JH, Yang P, Maurdev G, du Plessis J, Lamb PR, Fox BL, Michalski WP (2009) Combined continuous wave and pulsed plasma modes: for more stable interfaces with higher functionality on metal and semiconductor surfaces. Plasma Process Polym 6:615–619

    Article  CAS  Google Scholar 

  25. 25.

    Yasuda H (1981) Glow discharge polymerization. J Polym Sci Macromol Rev 16:199–293

    Article  CAS  Google Scholar 

  26. 26.

    Spanos CG, Badyal JPS, Goodwin AJ, Merlin PJ (2005) Pulsed plasma chemical deposition of polymeric salt networks. Polymer 46:8908–8912

    Article  CAS  Google Scholar 

  27. 27.

    Förch R, Zhang Z, Knoll W (2005) Soft plasma treated surfaces: tailoring of structure and properties for biomaterial applications. Plasma Process Polym 2:351–372

    Article  CAS  Google Scholar 

  28. 28.

    Dai XJ, du Plessis J, Kyratzis IL, Maurdev G, Huson MG, Coombs C (2009) Controlled amine functionalization and hydrophilicity of a poly (lactic acid) fabric. Plasma Process Polym 6:490–497

    Article  CAS  Google Scholar 

  29. 29.

    Girard-Lauriault P-L, Retzko I, Swaraj S, Matsubayashi N, Gross T, Mix R, Unger WES (2010) Non-destructive sub-surface chemical characterization of air-exposed plasma polymers by energy-resolved XPS. Plasma Process Polym 7:474–481

    Article  CAS  Google Scholar 

  30. 30.

    Blanchard NE, Naik VV, Geue T, Kahle O, Hegemann D, Heuberger M (2015) Response of plasma-polymerized hexamethyldisiloxane films to aqueous environments. Langmuir 31:12944–12953

    Article  CAS  PubMed  Google Scholar 

  31. 31.

    Hegemann D, Blanchard NE, Heuberger M (2016) Reduced protein adsorption on plasma polymer films comprising hydrophobic/hydrophilic vertical chemical gradients. Plasma Process Polym 13:494–498

    Article  CAS  Google Scholar 

  32. 32.

    Vandenbossche M, Bernard L, Rupper P, Maniura-Weber K, Heuberger M, Faccio G, Hegemann D (2017) Micro-patterned plasma polymer films for bio-sensing. Mater Des 114:123–128

    Article  CAS  Google Scholar 

  33. 33.

    Guex AG, Kocher FM, Fortunato G, Körner E, Hegemann D, Carrel TP, Tevaearai HT, Giraud MN (2012) Fine-tuning of substrate architecture and surface chemistry promotes muscle tissue development. Acta Biomater 8:1481–1489

    Article  CAS  PubMed  Google Scholar 

  34. 34.

    Hegemann D, Michlicek M, Blanchard NE, Schütz U, Lohmann D, Vandenbossche M, Zajickova L, Drabik M (2016) Deposition of functional plasma polymers influenced by reactor geometry in capacitively coupled discharges. Plasma Process Polym 13:279–286

    Article  CAS  Google Scholar 

  35. 35.

    Moulder F, Stickle WF, Sobol PE, Bomben KD (1995) Handbook of X-ray photoelectron spectroscopy. Physical Electronics Inc., Eden Prairie

    Google Scholar 

  36. 36.

    Korhonen JT, Huhtamäki T, Ikkala O, Ras RHA (2013) Reliable measurement of the receding contact angle. Langmuir 29:3858–3863

    Article  CAS  PubMed  Google Scholar 

  37. 37.

    Corbett JCW, McNeil-Watson F, Jack RO, Howarth M (2012) Measuring surface zeta potential using phase analysis light scattering in a simple dip cell arrangement. Colloid Surf A 396:169–176

    Article  CAS  Google Scholar 

  38. 38.

    Zuris JA, Thompson DB, Shu Y, Guilinger JP, Bessen JL, Hu JH, Maeder ML, Joung JK, Chen ZY, Liu DR (2015) Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotechnol 33:73–80

    Article  CAS  PubMed  Google Scholar 

  39. 39.

    Heck T, Pham P-H, Hammes F, Thöny-Meyer L, Richter M (2014) Continuous monitoring of enzymatic reactions on surfaces by real-time flow cytometry: sortase a catalyzed protein immobilization as a case study. Bioconjug Chem 25:1492–1500

    Article  CAS  PubMed  Google Scholar 

  40. 40.

    Heck T, Pham P-H, Yerlikaya A, Thöny-Meyer L, Richter M (2014) Sortase A catalyzed reaction pathways: a comparative study with six SrtA variants. Catal Sci Technol 4:2946–2956

    Article  CAS  Google Scholar 

  41. 41.

    Faccio G, Senkalla S, Thöny-Meyer L, Richter M (2015) Enzymatic multi-functionalization of microparticles under aqueous neutral conditions. RSC Adv 5:22319–22325

    Article  CAS  Google Scholar 

  42. 42.

    Lerner MG, Carlson HA (2006) APBS plugin for pymol. University of Michigan, Ann Arbor

    Google Scholar 

  43. 43.

    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci USA 98:10037–10041

    Article  CAS  PubMed  Google Scholar 

  45. 45.

    Haïdopoulos M, Horgnies M, Mirabella F, Pireaux JJ (2008) Angle-resolved XPS study of plasma-deposited polystyrene films after oxygen plasma treatment. Plasma Process Polym 5:67–75

    Article  CAS  Google Scholar 

  46. 46.

    Fahmy A, Schönhals A, Friedrich J (2013) Reaction of water with (radicals in) plasma polymerized allyl alcohol (and formation of OH-rich polymer layers). J Phys Chem B 117:10603–10611

    Article  CAS  PubMed  Google Scholar 

  47. 47.

    Hegemann D, Hossain M-M (2005) Influence of non-polymerizable gases added during plasma polymerization. Plasma Process Polym 2:554–562

    Article  CAS  Google Scholar 

  48. 48.

    Hegemann D, Körner E, Albrecht K, Schütz U, Guimond S (2010) Growth mechanism of oxygen-containing functional plasma polymers. Plasma Process Polym 7:889–898

    Article  CAS  Google Scholar 

  49. 49.

    Vandenbossche M, Hegemann D (2018) Recent approaches to reduce aging phenomena in oxygen- and nitrogen-containing plasma polymer films: An overview. Current Opin Solid State Mater Sci. https://doi.org/10.1016/j.cossms.2018.01.001

    Article  Google Scholar 

  50. 50.

    Poncin-Epaillard F, Brosse JC, Falher T (1999) Reactivity of surface groups formed onto a plasma treated poly(propylene) film. Macromol Chem Phys 200:989–996

    Article  CAS  Google Scholar 

  51. 51.

    Zhang Z, Chen Q, Knoll W, Förch R (2003) Effect of aqueous solution on functional plasma polymerized films. Surf Coat Technol 174–175:588–590

    Article  CAS  Google Scholar 

  52. 52.

    Topoglidis E, Cass AEG, Brian O’Regan, Durrant JR (2001) Immobilisation and bioelectrochemistry of proteins on nanoporous TiO2 and ZnO films. J Electroanal Chem 517:20–27

    Article  CAS  Google Scholar 

  53. 53.

    Dreesen L, Humbert C, Sartenaer Y, Caudano Y, Volcke C, Mani AA, Peremans A, Thiry PA (2004) Electronic and molecular properties of an adsorbed protein monolayer probed by two-color sum-frequency generation spectroscopy. Langmuir 20:7201–7207

    Article  CAS  PubMed  Google Scholar 

  54. 54.

    Ward WW (1998) Biochemical and physical properties of green fluorescent protein. In: Chalfie M, Kain S (eds) Green fluorescent protein: properties, applications and protocols. Wiley-Liss, New York, pp 45–75

    Google Scholar 

  55. 55.

    Holtz B, Wang Y, Zhu X-Y, Guo A (2007) Denaturing and refolding of protein molecules on surfaces. Proteomics 7:1771–1774

    Article  CAS  PubMed  Google Scholar 

  56. 56.

    Millqvist-Fureby A, Malmsten M, Bergenstahl B (1999) Spray-drying of trypsin—surface characterisation and activity preservation. Int J Pharm 188:243–253

    Article  CAS  PubMed  Google Scholar 

  57. 57.

    Bernard L, Rupper P, Faccio G, Hegemann D, Scholder O, Heuberger M, Maniura-Weber K, Vandenbossche M (2018) Plasma polymer film designs through the eyes of ToF-SIMS. Biointerphases 13:03B417

    Article  PubMed  Google Scholar 

  58. 58.

    Wahlgren M, Arnebrant T (1991) Protein adsorption to solid surfaces. Trends Biotechnol 9:201–208

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M. V. and D. H. gratefully acknowledge the Swiss National Science Foundation (SNSF, Bern) that funded this study under Grant No. IZ73Z0_152661 (SCOPES). A. C. and G. G.-G. like to acknowledge support by the Swiss National Science Foundation as part of the NCCR Molecular Systems Engineering as well as Prof. Wolfgang Meier. G. G.-G. thanks the German Academic Exchange Service (DAAD) for a postdoctoral fellowship. G. F. also would like to thank Erik Mailand for the technical assistance in the expression and purification of GFP.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dirk Hegemann.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 674 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vandenbossche, M., Gunkel-Grabole, G., Car, A. et al. Near-Surface Structure of Plasma Polymer Films Affects Surface Behavior in Water and its Interaction with Proteins. Plasma Chem Plasma Process 38, 851–870 (2018). https://doi.org/10.1007/s11090-018-9897-z

Download citation

Keywords

  • Plasma deposition
  • Vertical gradient film
  • Chemical depth profiling
  • Surface properties
  • Protein adsorption