Advertisement

Plasma Chemistry and Plasma Processing

, Volume 38, Issue 4, pp 851–870 | Cite as

Near-Surface Structure of Plasma Polymer Films Affects Surface Behavior in Water and its Interaction with Proteins

  • Marianne Vandenbossche
  • Gesine Gunkel-Grabole
  • Anja Car
  • Laetitia Bernard
  • Patrick Rupper
  • Katharina Maniura-Weber
  • Manfred Heuberger
  • Greta Faccio
  • Dirk Hegemann
Original Paper
  • 73 Downloads

Abstract

Using low pressure plasma polymerization, nano-scaled oxygen-rich plasma polymer films (CO) were deposited onto pristine silicon wafers as well as on nitrogen-containing plasma polymer (CN) model surfaces. We investigate the influence of the nature of the substrate as well as a potential sub-surface effect emerging from the buried CO/CN interface, just nanometers below the surface. X-ray Photoelectron Spectroscopy and Time-of-Flight Secondary Ion Mass Spectrometry revealed two important phenomena that occurred during the deposition of the terminal CO layer: (1) a strong degree of oxidation, already for 1 nm nominal thickness, and (2) a gradual transition in chemical composition between the two layers, clearly indicating that effectively a vertical chemical gradient results, even when a two-step coating process was applied. Such terminal gradient film structures were used to study film stability in aqueous environments. Molecular rearrangements were scrutinized in the top-surface in contact with water and we found that the top-surface chemistry and wetting properties of the oxygen-rich termination layer matched those of thick CO reference coatings. Nevertheless, the adsorption of green fluorescent protein (GFP) was observed to be sensitive to the CO terminal layer thickness. Namely, an enhanced protein adsorption was observed for 1–2 nm thick CO layers on CN, whereas a significantly reduced protein adsorption was seen on ≥ 3 nm thick CO terminal layers. We conclude that both, surface and sub-surface conditions significantly affect protein adsorption as opposed to the traditional consideration of surface properties alone.

Keywords

Plasma deposition Vertical gradient film Chemical depth profiling Surface properties Protein adsorption 

Notes

Acknowledgements

M. V. and D. H. gratefully acknowledge the Swiss National Science Foundation (SNSF, Bern) that funded this study under Grant No. IZ73Z0_152661 (SCOPES). A. C. and G. G.-G. like to acknowledge support by the Swiss National Science Foundation as part of the NCCR Molecular Systems Engineering as well as Prof. Wolfgang Meier. G. G.-G. thanks the German Academic Exchange Service (DAAD) for a postdoctoral fellowship. G. F. also would like to thank Erik Mailand for the technical assistance in the expression and purification of GFP.

Supplementary material

11090_2018_9897_MOESM1_ESM.docx (675 kb)
Supplementary material 1 (DOCX 674 kb)

References

  1. 1.
    Gunkel G, Huck WTS (2013) Cooperative adsorption of lipoprotein phospholipids, triglycerides, and cholesteryl esters are a key factor in nonspecific adsorption from blood plasma to antifouling polymer surfaces. J Am Chem Soc 135:7047–7052CrossRefGoogle Scholar
  2. 2.
    Gunkel G, Weinhart M, Becherer T, Haag R, Huck WTS (2011) Effect of polymer brush architecture on antibiofouling properties. Biomacromol 12:4169–4172CrossRefGoogle Scholar
  3. 3.
    Banerjee I, Pangule RC, Kane RS (2011) Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv Mater 23:690–718CrossRefGoogle Scholar
  4. 4.
    Tan CK, Blackwood DJ (2003) Corrosion protection by multilayered conducting polymer coatings. Corros Sci 45:545–557CrossRefGoogle Scholar
  5. 5.
    Sorensen PA, Kiil S, Dam-Johansen K, Weinell CE (2009) Anticorrosive coatings: a review. J Coat Technol Res 6:135–176CrossRefGoogle Scholar
  6. 6.
    Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105:1103–1170CrossRefGoogle Scholar
  7. 7.
    Makhneva E, Manakov A, Skladal P, Zajickova L (2016) Development of effective QCM biosensors by cyclopropylamine plasma polymerization and antibody immobilization using cross-linking reactions. Surf Coat Technol 290:116–123CrossRefGoogle Scholar
  8. 8.
    Altinisik A, Yurdakoc K (2016) Chitosan-/PVA-coated magnetic nanoparticles for Cu (II) ions adsorption. Desalin Water Treat 57:18463–18474CrossRefGoogle Scholar
  9. 9.
    Vandenbosche M, Derozier D, Casetta M, Jimenez M, Bellayer S, Traisnel M (2015) An innovative method to functionalize textiles for remediation of polluted media. Appl Surf Sci 330:111–117CrossRefGoogle Scholar
  10. 10.
    Jimenez M, Duquesne S, Bourbigot S (2006) Characterization of the performance of an intumescent fire protective coating. Surf Coat Technol 201:979–987CrossRefGoogle Scholar
  11. 11.
    Jimenez M, Lesaffre N, Bellayer S, Dupretz R, Vandenbossche M, Duquesne S, Bourbigot S (2015) Novel flame retardant flexible polyurethane foam: plasma induced graft-polymerization of phosphonates. RSC Adv. 5:63853–63865CrossRefGoogle Scholar
  12. 12.
    Schlenoff JB (2014) Zwitteration: coating surfaces with zwitterionic functionality to reduce nonspecific adsorption. Langmuir 30:9625–9636CrossRefGoogle Scholar
  13. 13.
    Lau KHA, Sileika TS, Park SH, Sousa AML, Burch P, Szleifer I, Messersmith PB (2015) Molecular design of antifouling polymer brushes using sequence-specific peptoids. Adv Mater Interfaces 2:1400225CrossRefGoogle Scholar
  14. 14.
    Yasuda H, Matsuzawa Y (2005) Economical advantages of low-pressure plasma polymerization coating. Plasma Process Polym 2:507–512CrossRefGoogle Scholar
  15. 15.
    Ligot S, Bousser E, Cossement D, Klemberg-Sapieha J, Viville P, Dubois P, Snyders R (2015) Correlation between mechanical properties and cross-linking degree of ethyl lactate plasma polymer films. Plasma Process Polym 12:508–518CrossRefGoogle Scholar
  16. 16.
    Rupper P, Vandenbossche M, Bernard L, Hegemann D, Heuberger M (2017) Composition and stability of plasma polymer films exhibiting vertical chemical gradients. Langmuir 33:2340–2352CrossRefGoogle Scholar
  17. 17.
    Hegemann D (2015) Controlling the nanostructure and stability of a-C:H: N plasma polymers. Thin Solid Films 581:2–6CrossRefGoogle Scholar
  18. 18.
    Hegemann D, Hanselmann B, Guimond S, Fortunato G, Giraud M-N, Guex AG (2014) Considering the degradation effects of amino-functional plasma polymer coatings for biomedical application. Surf Coat Technol 255:90–95CrossRefGoogle Scholar
  19. 19.
    Hegemann D, Körner E, Blanchard NE, Drabik M, Guimond S (2012) Densification of functional plasma polymers by momentum transfer during film growth. Appl Phys Lett 101:211603CrossRefGoogle Scholar
  20. 20.
    Hegemann D, Hanselmann B, Blanchard N, Amberg M (2014) Plasma-substrate interaction during plasma deposition on polymers. Contrib Plasma Phys 54:162–169CrossRefGoogle Scholar
  21. 21.
    Vandenbossche M, Butron Garcia M-I, Schütz U, Rupper P, Amberg M, Hegemann D (2016) Initial growth of functional plasma polymer nanofilms. Plasma Chem Plasma Process 36:667–677CrossRefGoogle Scholar
  22. 22.
    Hegemann D, Lorusso E, Butron Garcia MI, Blanchard NE, Rupper P, Favia P, Heuberger M, Vandenbossche M (2016) Suppression of hydrophobic recovery by plasma polymer films with vertical chemical gradients. Langmuir 32:651–654CrossRefGoogle Scholar
  23. 23.
    Dorst J, Vandenbossche M, Amberg M, Bernard L, Rupper P, Weltmann K-D, Fricke K, Hegemann D (2017) Improving the stability of amino-containing plasma polymer films in aqueous environments. Langmuir 33:10736–10744CrossRefGoogle Scholar
  24. 24.
    Li L, Dai XJ, Xu HS, Zhao JH, Yang P, Maurdev G, du Plessis J, Lamb PR, Fox BL, Michalski WP (2009) Combined continuous wave and pulsed plasma modes: for more stable interfaces with higher functionality on metal and semiconductor surfaces. Plasma Process Polym 6:615–619CrossRefGoogle Scholar
  25. 25.
    Yasuda H (1981) Glow discharge polymerization. J Polym Sci Macromol Rev 16:199–293CrossRefGoogle Scholar
  26. 26.
    Spanos CG, Badyal JPS, Goodwin AJ, Merlin PJ (2005) Pulsed plasma chemical deposition of polymeric salt networks. Polymer 46:8908–8912CrossRefGoogle Scholar
  27. 27.
    Förch R, Zhang Z, Knoll W (2005) Soft plasma treated surfaces: tailoring of structure and properties for biomaterial applications. Plasma Process Polym 2:351–372CrossRefGoogle Scholar
  28. 28.
    Dai XJ, du Plessis J, Kyratzis IL, Maurdev G, Huson MG, Coombs C (2009) Controlled amine functionalization and hydrophilicity of a poly (lactic acid) fabric. Plasma Process Polym 6:490–497CrossRefGoogle Scholar
  29. 29.
    Girard-Lauriault P-L, Retzko I, Swaraj S, Matsubayashi N, Gross T, Mix R, Unger WES (2010) Non-destructive sub-surface chemical characterization of air-exposed plasma polymers by energy-resolved XPS. Plasma Process Polym 7:474–481CrossRefGoogle Scholar
  30. 30.
    Blanchard NE, Naik VV, Geue T, Kahle O, Hegemann D, Heuberger M (2015) Response of plasma-polymerized hexamethyldisiloxane films to aqueous environments. Langmuir 31:12944–12953CrossRefGoogle Scholar
  31. 31.
    Hegemann D, Blanchard NE, Heuberger M (2016) Reduced protein adsorption on plasma polymer films comprising hydrophobic/hydrophilic vertical chemical gradients. Plasma Process Polym 13:494–498CrossRefGoogle Scholar
  32. 32.
    Vandenbossche M, Bernard L, Rupper P, Maniura-Weber K, Heuberger M, Faccio G, Hegemann D (2017) Micro-patterned plasma polymer films for bio-sensing. Mater Des 114:123–128CrossRefGoogle Scholar
  33. 33.
    Guex AG, Kocher FM, Fortunato G, Körner E, Hegemann D, Carrel TP, Tevaearai HT, Giraud MN (2012) Fine-tuning of substrate architecture and surface chemistry promotes muscle tissue development. Acta Biomater 8:1481–1489CrossRefGoogle Scholar
  34. 34.
    Hegemann D, Michlicek M, Blanchard NE, Schütz U, Lohmann D, Vandenbossche M, Zajickova L, Drabik M (2016) Deposition of functional plasma polymers influenced by reactor geometry in capacitively coupled discharges. Plasma Process Polym 13:279–286CrossRefGoogle Scholar
  35. 35.
    Moulder F, Stickle WF, Sobol PE, Bomben KD (1995) Handbook of X-ray photoelectron spectroscopy. Physical Electronics Inc., Eden PrairieGoogle Scholar
  36. 36.
    Korhonen JT, Huhtamäki T, Ikkala O, Ras RHA (2013) Reliable measurement of the receding contact angle. Langmuir 29:3858–3863CrossRefGoogle Scholar
  37. 37.
    Corbett JCW, McNeil-Watson F, Jack RO, Howarth M (2012) Measuring surface zeta potential using phase analysis light scattering in a simple dip cell arrangement. Colloid Surf A 396:169–176CrossRefGoogle Scholar
  38. 38.
    Zuris JA, Thompson DB, Shu Y, Guilinger JP, Bessen JL, Hu JH, Maeder ML, Joung JK, Chen ZY, Liu DR (2015) Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotechnol 33:73–80CrossRefGoogle Scholar
  39. 39.
    Heck T, Pham P-H, Hammes F, Thöny-Meyer L, Richter M (2014) Continuous monitoring of enzymatic reactions on surfaces by real-time flow cytometry: sortase a catalyzed protein immobilization as a case study. Bioconjug Chem 25:1492–1500CrossRefGoogle Scholar
  40. 40.
    Heck T, Pham P-H, Yerlikaya A, Thöny-Meyer L, Richter M (2014) Sortase A catalyzed reaction pathways: a comparative study with six SrtA variants. Catal Sci Technol 4:2946–2956CrossRefGoogle Scholar
  41. 41.
    Faccio G, Senkalla S, Thöny-Meyer L, Richter M (2015) Enzymatic multi-functionalization of microparticles under aqueous neutral conditions. RSC Adv 5:22319–22325CrossRefGoogle Scholar
  42. 42.
    Lerner MG, Carlson HA (2006) APBS plugin for pymol. University of Michigan, Ann ArborGoogle Scholar
  43. 43.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242CrossRefGoogle Scholar
  44. 44.
    Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci USA 98:10037–10041CrossRefGoogle Scholar
  45. 45.
    Haïdopoulos M, Horgnies M, Mirabella F, Pireaux JJ (2008) Angle-resolved XPS study of plasma-deposited polystyrene films after oxygen plasma treatment. Plasma Process Polym 5:67–75CrossRefGoogle Scholar
  46. 46.
    Fahmy A, Schönhals A, Friedrich J (2013) Reaction of water with (radicals in) plasma polymerized allyl alcohol (and formation of OH-rich polymer layers). J Phys Chem B 117:10603–10611CrossRefGoogle Scholar
  47. 47.
    Hegemann D, Hossain M-M (2005) Influence of non-polymerizable gases added during plasma polymerization. Plasma Process Polym 2:554–562CrossRefGoogle Scholar
  48. 48.
    Hegemann D, Körner E, Albrecht K, Schütz U, Guimond S (2010) Growth mechanism of oxygen-containing functional plasma polymers. Plasma Process Polym 7:889–898CrossRefGoogle Scholar
  49. 49.
    Vandenbossche M, Hegemann D (2018) Recent approaches to reduce aging phenomena in oxygen- and nitrogen-containing plasma polymer films: An overview. Current Opin Solid State Mater Sci.  https://doi.org/10.1016/j.cossms.2018.01.001 Google Scholar
  50. 50.
    Poncin-Epaillard F, Brosse JC, Falher T (1999) Reactivity of surface groups formed onto a plasma treated poly(propylene) film. Macromol Chem Phys 200:989–996CrossRefGoogle Scholar
  51. 51.
    Zhang Z, Chen Q, Knoll W, Förch R (2003) Effect of aqueous solution on functional plasma polymerized films. Surf Coat Technol 174–175:588–590CrossRefGoogle Scholar
  52. 52.
    Topoglidis E, Cass AEG, Brian O’Regan, Durrant JR (2001) Immobilisation and bioelectrochemistry of proteins on nanoporous TiO2 and ZnO films. J Electroanal Chem 517:20–27CrossRefGoogle Scholar
  53. 53.
    Dreesen L, Humbert C, Sartenaer Y, Caudano Y, Volcke C, Mani AA, Peremans A, Thiry PA (2004) Electronic and molecular properties of an adsorbed protein monolayer probed by two-color sum-frequency generation spectroscopy. Langmuir 20:7201–7207CrossRefGoogle Scholar
  54. 54.
    Ward WW (1998) Biochemical and physical properties of green fluorescent protein. In: Chalfie M, Kain S (eds) Green fluorescent protein: properties, applications and protocols. Wiley-Liss, New York, pp 45–75Google Scholar
  55. 55.
    Holtz B, Wang Y, Zhu X-Y, Guo A (2007) Denaturing and refolding of protein molecules on surfaces. Proteomics 7:1771–1774CrossRefGoogle Scholar
  56. 56.
    Millqvist-Fureby A, Malmsten M, Bergenstahl B (1999) Spray-drying of trypsin—surface characterisation and activity preservation. Int J Pharm 188:243–253CrossRefGoogle Scholar
  57. 57.
    Bernard L, Rupper P, Faccio G, Hegemann D, Scholder O, Heuberger M, Maniura-Weber K, Vandenbossche M (2018) Plasma polymer film designs through the eyes of ToF-SIMS. Biointerphases 13:03B417CrossRefGoogle Scholar
  58. 58.
    Wahlgren M, Arnebrant T (1991) Protein adsorption to solid surfaces. Trends Biotechnol 9:201–208CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Marianne Vandenbossche
    • 1
  • Gesine Gunkel-Grabole
    • 2
  • Anja Car
    • 2
  • Laetitia Bernard
    • 3
  • Patrick Rupper
    • 1
  • Katharina Maniura-Weber
    • 4
  • Manfred Heuberger
    • 1
  • Greta Faccio
    • 4
  • Dirk Hegemann
    • 1
  1. 1.Laboratory of Advanced FibersEmpa, Swiss Federal Laboratories for Materials Science and TechnologySt. GallenSwitzerland
  2. 2.Department of ChemistryUniversity of BaselBaselSwitzerland
  3. 3.Laboratory for Nanoscale Materials ScienceEmpa, Swiss Federal Laboratories for Materials Science and TechnologyDübendorfSwitzerland
  4. 4.Laboratory for BiointerfacesEmpa, Swiss Federal Laboratories for Materials Science and TechnologySt. GallenSwitzerland

Personalised recommendations