Plasma Chemistry and Plasma Processing

, Volume 38, Issue 3, pp 517–534 | Cite as

Impact of Argon in Reforming of (CH4 + CO2) in Surface Dielectric Barrier Discharge Reactor to Produce Syngas and Liquid Fuels

  • Abdelkader Rahmani
  • Mehrdad Nikravech
Original Paper


The aim of this work is to study the role of argon during plasma reforming of methane and carbon dioxide in order to convert Biogas into liquid fuels. Mixtures of synthetic CH4 and CO2, representing typical biogas compositions, were processed in a surface dielectric barrier discharge reactor in the presence of argon, which is considered to improve the discharge conditions. Our measurements showed that at constant feed flow rate and constant applied power, increasing the argon percentage from 0 to 66% in the feed, leads to increase the electron density up to 60% and the electron mean energy up to 50%. In these conditions, the absolute conversions of CH4 and CO2 are improved respectively from 19 to 43% and from 11 to 25%, the H2/CO ratio enhances up to 0.9. However, despite these improvements, the addition of argon beyond 33% decreases the carbon balance by deposition of black carbon and soot, decreases the selectivity of liquid products and finally lowers the energy efficiency of CH4 + CO2 mixture conversion. Meanwhile the selectivity of 10 liquid fuels principally alcohols, ketones and light organic acids, obtained in a yield of 3 wt%, depends also on the flow rate of argon in the feed mixture.


Biogas Dry reforming DBD Liquid fuels Argon 



This work was carried out with the financial support of Université Sorbonne Paris Cité in the framework of the Programme Interdisciplinaire: Les Energies de Demain.


  1. 1.
    Connolly D, Lund H, Mathiesen BV (2016) Smart energy Europe: the technical and economic impact of one potential 100% renewable energy scenario for the European Union. Renew Sustain Energy Rev 60:1634–1653CrossRefGoogle Scholar
  2. 2.
    EurObservER (2014) Biogas-barometer-2014. In: Barometer. EurObservER, p 6Google Scholar
  3. 3.
    Bradford MCJ, Vannice MA (1999) CO2 reforming of CH4. Catal Rev 41(1):1–42CrossRefGoogle Scholar
  4. 4.
    Hu YH, Ruckenstein E (2004) Catalytic conversion of methane to synthesis gas by partial oxidation and CO2 reforming. ChemInform 48:297–345Google Scholar
  5. 5.
    Petitpas G et al (2007) A comparative study of non-thermal plasma assisted reforming technologies. Int J Hydrog Energy 32(14):2848–2867CrossRefGoogle Scholar
  6. 6.
    Tao X, Bai M, Li X, Long H, Shang S, Yin Y, Dai X (2011) CH4–CO2 reforming by plasma—challenges and opportunities. Prog Energy Combust Sci 37(2):113–124CrossRefGoogle Scholar
  7. 7.
    Lebouvier A et al (2013) Assessment of carbon dioxide dissociation as a new route for syngas production: a comparative review and potential of plasma-based technologies. Energy Fuels 27(5):2712–2722CrossRefGoogle Scholar
  8. 8.
    Snoeckx R, Bogaerts A (2017) Plasma technology—a novel solution for CO2 conversion? Chem Soc Rev 46(19):5805–5863CrossRefGoogle Scholar
  9. 9.
    Gibalov VI, Pietsch GJ (2012) Dynamics of dielectric barrier discharges in different arrangements. Plasma Sources Sci Technol 21(2):024010CrossRefGoogle Scholar
  10. 10.
    Nikravech M, Rahmani A, Lazzaroni C, Baba K (2015) CH4–CO2 reforming in surface-discharge reactor containing ZnO–Cu and NiO catalysts—influence of the applied power on products distribution. In: 22nd international symposium on plasma chemistry, P-II-8-32, p 5Google Scholar
  11. 11.
    Yap D, Tatibouët J-M, Batiot-Dupeyrat C (2018) Catalyst assisted by non-thermal plasma in dry reforming of methane at low temperature. Catal Today 299:263–271CrossRefGoogle Scholar
  12. 12.
    Zeng YX et al (2018) Low temperature reforming of biogas over K-, Mg- and Ce-promoted Ni/Al2O3 catalysts for the production of hydrogen rich syngas: understanding the plasma-catalytic synergy. Appl Catal B 224:469–478CrossRefGoogle Scholar
  13. 13.
    Ray D, Reddy PMK, Challapalli S (2017) Glass beads packed DBD-plasma assisted dry reforming of methane. Top Catal 60(12–14):869–878CrossRefGoogle Scholar
  14. 14.
    Allégraud K (2008) Décharge à barrière diélectrique de surface: physique et procédé. Ecole Polytechnique XGoogle Scholar
  15. 15.
    Malik MA, Malik SA, Jiang X (1999) Plasma reforming of natural gas to more valuable fuels. J Nat Gas Chem 8:166–178Google Scholar
  16. 16.
    Liu C-J, Xu G-H, Wang T (1999) Non-thermal plasma approaches in CO2 utilization. Fuel Process Technol 58(2):119–134CrossRefGoogle Scholar
  17. 17.
    Snoeckx R et al (2017) Plasma-based liquefaction of methane: the road from hydrogen production to direct methane liquefaction. Plasma Process Polym 14(6):1600115CrossRefGoogle Scholar
  18. 18.
    Ramakers M, Michielsen I, Aerts R, Meynen V, Bogaerts A (2015) Effect of argon or helium on the CO2 conversion in a dielectric barrier discharge. Plasma Process Polym 12(8):755–763CrossRefGoogle Scholar
  19. 19.
    Jo S, Lee DH, Song Y-H (2015) Product analysis of methane activation using noble gases in a non-thermal plasma. Chem Eng Sci 130:101–108CrossRefGoogle Scholar
  20. 20.
    Pinhão NR, Janeco A, Branco JB (2011) Influence of helium on the conversion of methane and carbon dioxide in a dielectric barrier discharge. Plasma Chem Plasma Process 31(3):427–439CrossRefGoogle Scholar
  21. 21.
    Goujard V, Tatibouët J-M, Batiot-Dupeyrat C (2011) Carbon dioxide reforming of methane using a dielectric barrier discharge reactor: effect of helium dilution and kinetic model. Plasma Chem Plasma Process 31(2):315–325CrossRefGoogle Scholar
  22. 22.
    Ozkan A et al (2015) CO2–CH4 conversion and syngas formation at atmospheric pressure using a multi-electrode dielectric barrier discharge. J CO2 Util 9:74–81CrossRefGoogle Scholar
  23. 23.
    Zhang A-J et al (2010) Conversion of greenhouse gases into syngas via combined effects of discharge activation and catalysis. Chem Eng J 156(3):601–606CrossRefGoogle Scholar
  24. 24.
    Janeco A, Pinhão NR, Guerra V (2014) Electron kinetics in He/CH4/CO2 mixtures used for methane conversion. J Phys Chem C 119(1):109–120CrossRefGoogle Scholar
  25. 25.
    Tu X, Whitehead JC (2012) Plasma-catalytic dry reforming of methane in an atmospheric dielectric barrier discharge: understanding the synergistic effect at low temperature. Appl Catal B 125:439–448CrossRefGoogle Scholar
  26. 26.
    Snoeckx R et al (2015) Plasma-based dry reforming: improving the conversion and energy efficiency in a dielectric barrier discharge. RSC Adv 5(38):29799–29808CrossRefGoogle Scholar
  27. 27.
    Sebastian AA, Wadehra JM (2005) Time-dependent behaviour of electron transport in methane–argon mixtures. J Phys D Appl Phys 38(10):1577–1587CrossRefGoogle Scholar
  28. 28.
    Lowke J (1997) A unified theory of arcs and their electrodes. Le Journal de Physique IV 7(C4):C4-283–C4-294Google Scholar
  29. 29.
    Kim JH, Choi YH, Hwang YS (2006) Electron density and temperature measurement method by using emission spectroscopy in atmospheric pressure nonequilibrium nitrogen plasmas. Phys Plasmas 13(9):093501CrossRefGoogle Scholar
  30. 30.
    Hagelaar G, Pitchford L (2005) Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models. Plasma Sources Sci Technol 14(4):722–733CrossRefGoogle Scholar
  31. 31.
    Snoeckx R et al (2013) Plasma-based dry reforming: a computational study ranging from the nanoseconds to seconds time scale. J Phys Chem C 117(10):4957–4970CrossRefGoogle Scholar
  32. 32.
    Janev RK, Reiter D (2002) Collision processes of CHy and CHy+ hydrocarbons with plasma electrons and protons. Phys Plasmas 9(9):4071–4081CrossRefGoogle Scholar
  33. 33.
    Anicich VG (2003) An index of the literature for bimolecular gas phase cation-molecule reaction kinetics. JPL Publication 03-19, JPL, NASA, PasadenaGoogle Scholar
  34. 34.
    Tsang W, Hampson R (1986) Chemical kinetic data base for combustion chemistry. Part I. Methane and related compounds. J Phys Chem Ref Data 15(3):1087–1279CrossRefGoogle Scholar
  35. 35.
    Zhang H, Li X, Zhu F, Cen K, Du C, Tu X (2017) Plasma assisted dry reforming of methanol for clean syngas production and high-efficiency CO2 conversion. Chem Eng J 310:114–119CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.LSPM-CNRSUniversité Sorbonne Paris Cité, Université Paris 13VilletaneuseFrance

Personalised recommendations