Skip to main content
Log in

Hybrid Nanomaterial Architectures: Combining Layers of Carbon Nanowalls, Nanotubes, and Particles

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The paper focuses on the integration in hybrid architectures of plasma produced nanomaterials. The routes for the fabrication of layered structures consisting of carbon nanowalls on carbon nanotubes (CNW/CNT), of carbon nanotubes on carbon nanowalls (CNT/CNW), and nanoparticles on carbon nanowalls (NP/CNW) are presented. The morphology and structure of the hybrid architectures were investigated by electron microscopy techniques. We show that higher substrate temperature promotes the formation of high mass hydrogenated carbon clusters which favors the dominance of CNW growth over that of CNT. On this basis, a procedure of obtaining CNT/CNW architectures by switching the growth regime via substrate temperature is described. The specific limitations or advantages concerning the control or the properties of the obtained architectures are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Qi JL, Zhang F, Zhang LX, Cao J, Feng JC (2014) Mater Res Express 1:025601

    Article  CAS  Google Scholar 

  2. Shahriary L, Ghourchian H, Athawale AA (2014) J Nanotechnol. https://doi.org/10.1155/2014/903872

    Article  Google Scholar 

  3. Kerdcharoen T, Wongchoosuk C (2013) Semiconductor gas sensors. Woodhead Publishing Limited, Cambridge, pp 386–407. https://doi.org/10.1533/9780857098665.3.386

    Book  Google Scholar 

  4. Zhou M, Liu X, Yu B, Cai J, Liao C, Ni Z, Zhang Z, Ren Z, Bai J, Fan H (2015) Appl Surf Sci 333:78–85

    Article  CAS  Google Scholar 

  5. Siddhanta S, Thakur V, Narayana C, Shivaprasad SM (2012) ACS Appl Mater Interfaces 4:5807–5812

    Article  CAS  PubMed  Google Scholar 

  6. Xue Y, Ding Y, Niu J, Xia Z, Roy A, Chen H, Qu J, Wang ZL, Dai L (2015) Sci Adv 1(8):e1400198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yu D, Dai L (2010) J Phys Chem Lett 1:467–470

    Article  CAS  Google Scholar 

  8. Jiang J, Liu J, Zhou W, Zhu J, Huang X, Qi X, Zhang H, Yu T (2011) Energy Environ Sci 4:5000

    Article  CAS  Google Scholar 

  9. Dinh TM, Achour A, Vizireanu S, Dinescu G, Nistor L, Armstrong K, Guay D, Pech D (2014) Nano Energy 10:288–294

    Article  CAS  Google Scholar 

  10. Wang BB, Zhu K, Ostrikov K, Shao RW, Zheng K (2016) J Appl Phys 119:024302

    Article  CAS  Google Scholar 

  11. Dong X, Li B, Wei A, Cao X, Chan-Park MB, Zhang H, Li LJ, Huang W, Chen P (2011) Carbon 49:2944–2949

    Article  CAS  Google Scholar 

  12. Li W, Dichiara A, Bai J (2013) Compos Sci Technol 74:221–227

    Article  CAS  Google Scholar 

  13. Dichiara A, Yuan JK, Yao SH, Sylvestre A, Bai J (2012) J Nanosci Nanotechnol 12(9):6935–6940

    Article  CAS  PubMed  Google Scholar 

  14. Pham KC, McPhail DS, Mattevi C, Wee ATS, Chua DHC (2016) J Electrochem Soc 163(3):F255–F263

    Article  CAS  Google Scholar 

  15. Peng Q, He X, Li Y, Wang C, Wang R, Hu P, Yan Y, Sritharan T (2012) J Mater Chem 22:5928–5931

    Article  CAS  Google Scholar 

  16. Koh ATT, Chen T, Pan L, Sun Z, Chua DHC (2013) J Appl Phys 113:174909

    Article  CAS  Google Scholar 

  17. Zhang S, Liu WB, Hao LF, Jiao WC, Yang F, Wang RG (2013) Compos Sci Technol 88:120–125

    Article  CAS  Google Scholar 

  18. Liu Y, Liu Y, Feng H, Wu Y, Joshi L, Zeng X, Li J (2012) Biosens Bioelectron 35:63–68

    Article  CAS  PubMed  Google Scholar 

  19. Bohnenberger T, Schmid U (2015) Procedia Eng 120:1037–1041

    Article  CAS  Google Scholar 

  20. Gupta S, Heintzman E, Price C (2016) J Nanosci Nanotechnol 16(5):4771–4782

    Article  CAS  PubMed  Google Scholar 

  21. Stancu EC, Stanciuc AM, Vizireanu S, Luculescu C, Moldovan L, Achour A, Dinescu G (2014) J Phys D Appl Phys 47:265203

    Article  CAS  Google Scholar 

  22. Wang XP, Wang LJ, Liu XF, Yang C, Jing LW, Pan XF, Li SK (2013) Carbon 58:170–174

    Article  CAS  Google Scholar 

  23. Hsu HC, Wang CH, Nataraj SK, Huang HC, Du HY, Chang ST, Chen LC, Chen KH (2012) Diam Relat Mater 25:176–179

    Article  CAS  Google Scholar 

  24. Tunckol M, Durand J, Serp P (2012) Carbon 50(12):4303–4334

    Article  CAS  Google Scholar 

  25. Bo Z, Yang Y, Chen J, Yu K, Yana J, Cen K (2013) Nanoscale 5:5180–5204

    Article  CAS  PubMed  Google Scholar 

  26. Saito T, Chiba H, Ito T, Ogino T (2010) Carbon 48:1305–1311

    Article  CAS  Google Scholar 

  27. Vizireanu S, Nistor L, Haupt M, Katzenmaier V, Oehr C, Dinescu G (2008) Plasma Process Polym 5(3):263–268

    Article  CAS  Google Scholar 

  28. Vizireanu S, Stoica SD, Luculescu C, Nistor LC, Mitu B, Dinescu G (2010) Plasma Sources Sci Technol 19:3

    Article  CAS  Google Scholar 

  29. Malesevic A, Vizireanu S, Kemps R, Vanhulsel A, Van Haesendonck C (2007) Carbon 45:2932

    Article  CAS  Google Scholar 

  30. Acosta Gentoiu M, Betancourt-Riera R, Vizireanu S, Burducea I, Marascu V, Stoica SD, Bita BI, Dinescu G, Riera R (2017) J Nanomater. https://doi.org/10.1155/2017/1374973

    Article  Google Scholar 

  31. Vizireanu S, Stoica SD, Mitu B, Husanu MA, Galca A, Nistor L, Dinescu G (2009) Appl Surf Sci 255(10):5378

    Article  CAS  Google Scholar 

  32. Birjega R, Vizireanu SI, Dinescu G, Nistor LC, Ganea R (2009) Superlattices Microstruct 46:297–301

    Article  CAS  Google Scholar 

  33. Shin MK, Lee B, Hyeong Kim S, Lee JA, Spinks GM, Gambhir S, Wallace GG, Kozlov ME, Baughman RH, Kim SJ (2012) Nat Commun 3:650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Petrov I, Barna PB, Hultman L, Greene JE (2003) J Vac Sci Technol A 21(5):S117–S128

    Article  CAS  Google Scholar 

  35. Je JH, Kang TS, Noh DY (1997) J Appl Phys 81(10):6716–6722

    Article  CAS  Google Scholar 

  36. Caillard A, Cuynet S, Lecas T, Andreazza P, Mikikian M, Thomann AL, Brault P (2015) J Phys D Appl Phys 48:475302

    Article  CAS  Google Scholar 

  37. Cassidy C, Singh V, Hawash Z, Bohra M, Kim JH, Sowwan M (2013) MRS proceedings, p 1546. https://doi.org/10.1557/opl.2013.658

  38. Xirouchaki C, Palmer RE (2004) Philos Trans R Soc Lond A 362:117–124

    Article  CAS  Google Scholar 

  39. Acsente T, Negrea RF, Nistor LC, Logofatu C, Matei E, Birjega R, Grisolia C, Dinescu G (2015) Eur Phys J D 69:161

    Article  CAS  Google Scholar 

  40. Lazea Stoyanova A, Vlad A, Vlaicu AM, Teodorescu VS, Dinescu G (2015) Plasma Process Polym 12(8):705–709

    Article  CAS  Google Scholar 

  41. Vizireanu S, Mitu B, Luculescu C, Nistor L, Dinescu G (2012) Surf Coat Technol 211:2–8

    Article  CAS  Google Scholar 

  42. Bystrov K, van de Sanden MCM, Arnas C, Marot L, Mathys D, Liu F, Xu LK, Li XB, Shalpegin AV, De Temmerman G (2014) Carbon 68:695–707

    Article  CAS  Google Scholar 

  43. Mihai S, Dinescu A, Nistor LC, Ciuparu D (2014) Adv Sci Eng Med 6:399–404

    Article  CAS  Google Scholar 

  44. Kim YS, Kumar K, Fisher FT, Yang EH (2012) Nanotechnology 23(1):15301

    Article  CAS  Google Scholar 

  45. Wang DW, Li F, Liu M, Lu GQ, Cheng HM (2008) Angew Chem Int Ed Engl 47(2):373–376

    Article  PubMed  Google Scholar 

  46. Dimitrakakis GK, Tylianakis E, Froudakis GE (2008) Nano Lett 8(10):3166–3170

    Article  CAS  PubMed  Google Scholar 

  47. Felten A, Bittencourt C, Colomer JF, Van Tendeloo G, Pireaux JJ (2007) Carbon 45:110–116

    Article  CAS  Google Scholar 

  48. Hu MS, Kuo CC, Wu CT, Chen CW, Ang PK, Loh KP, Chen KH, Chen LC (2011) Carbon 49(14):4911–4919

    Article  CAS  Google Scholar 

  49. Choi WC, Woo SI, Jeon MK, Sohn JM, Kim MR, Jeon HJ (2005) Adv Mater 17:446–451

    Article  CAS  Google Scholar 

  50. Podlovchenko BI, Krivchenko VA, Maksimov YuM, Gladysheva TD, Yashina LV, Evlashin SA, Pilevsky AA (2012) Electrochimica Acta 76:137–144

    Article  CAS  Google Scholar 

  51. Zhang C, Hu J, Wang X, Zhang X, Toyoda H, Nagatsu M, Meng Y (2012) Carbon 50:3731–3738

    Article  CAS  Google Scholar 

  52. Acsente T, Negrea RF, Nistor LC, Matei E, Grisolia C, Birjega R, Dinescu G (2017) Mater Lett 200:121–124

    Article  CAS  Google Scholar 

  53. Chai B, Li J, Xu Q, Dai K (2014) Mater Lett 120:177–181

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Dr. Leona Nistor for her help with transmission electron microscopy investigations, and Dr. Catalin Luculescu for his help with scanning electron microscopy. This work has been financed by the Romanian National Authority for Research and Innovation in the frame of Nucleus Programme INFLPR/2018 and Project CELLAB-SLP PN-III-P2-2.1-PED-2016-0287.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Dinescu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stoica, S.D., Vizireanu, S., Acsente, T. et al. Hybrid Nanomaterial Architectures: Combining Layers of Carbon Nanowalls, Nanotubes, and Particles. Plasma Chem Plasma Process 38, 695–706 (2018). https://doi.org/10.1007/s11090-018-9885-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-018-9885-3

Keywords

Navigation