Plasma Chemistry and Plasma Processing

, Volume 38, Issue 3, pp 599–620 | Cite as

Loop Type of Inductively Coupled Thermal Plasmas System for Rapid Two-Dimensional Oxidation of Si Substrate Surface

  • Takumi Tsuchiya
  • Yasunori Tanaka
  • Y. Maruyama
  • A. Fujita
  • M. K. S. Tial
  • Y. Uesugi
  • T. Ishijima
  • T. Yukimoto
  • H. Kawaura
Original Paper
  • 18 Downloads

Abstract

This paper describes the use of loop-type inductively coupled thermal plasmas (loop-ICTP) for two-dimensional (2D) rapid oxidation processing. The unique and original loop-ICTP torch has been developed for large-area rapid materials processing. We applied the loop-ICTP to surface oxidation of a Si substrate as an example of materials processing. A part of the \(\hbox {Ar/O}_2\) loop-ICTP is formed, lying linearly on the surface of the substrate. In addition, scanning the Si substrate enabled 2D oxidation for the whole Si substrate surface. The uniformity of the oxide layer thickness and the oxidation rate were estimated by measuring the thickness of the oxide layer fabricated on the Si substrate. As a result, controlling the pressure offered more uniform oxide layer thickness, and gas injection onto the linear plasma on the substrate improved the uniformity of the oxide thickness. It should be noted that only three minutes of exposure of \(\hbox {Ar/O}_2\) loop-ICTP is sufficient to create an oxide layer with approximately 100 nm thickness for a 2-inch Si substrate surface.

Keywords

Thermal plasma Inductively coupled plasma Oxidation Silicon Surface modification 

References

  1. 1.
    Choi S, Matsuo J, Watanabe T (2013) Synthesis of AlB\(_{12}\) and YB\(_{66}\) nanoparticles by RF thermal plasmas. J Phys Conf Ser 441:012030CrossRefGoogle Scholar
  2. 2.
    Colombo V, Ghedini E, Gherardi M, Sanibondi P (2013) Evaluation of precursor evaporation in Si nanoparticle synthesis by inductively coupled thermal plasmas. Plasma Sources Sci Technol 22:035010CrossRefGoogle Scholar
  3. 3.
    Colombo V, Ghedini E, Gherardi M, Sanibondi P (2012) Modelling for the optimization of the reaction chamber in silicon nanoparticle synthesis by a radio-frequency induction thermal plasma. Plasma Sources Sci Technol 21:055007CrossRefGoogle Scholar
  4. 4.
    Pristavita R, Mendoza-Gonzalez NY, Meunier JL, Berk D (2011) Carbon nanoparticle production by inductively coupled thermal plasmas: controlling the thermal history of particle nucleation. Plasma Chem Plasma Process 31:851–66CrossRefGoogle Scholar
  5. 5.
    Shigeta M, Watanabe T (2010) Growth model of binary alloy nanopowders for thermal plasma synthesis. J Appl Phys 108:043306CrossRefGoogle Scholar
  6. 6.
    Li JG, Ikeda M, Ye R, Moriyoshi Y, Ishigaki T (2007) Control of particle size and phase formation of TiO\(_{2}\) nanoparticles synthesized in RF induction plasma. J Phys D Appl Phys 40:2348–53CrossRefGoogle Scholar
  7. 7.
    Alinejad Y, Faucheuxa N, Soucyb G (2013) Preosteoblasts behavior in contact with single-walled carbon nanotubes synthesized by radio frequency induction thermal plasma using various catalysts. J Appl Toxicol 33:1143–55CrossRefGoogle Scholar
  8. 8.
    Shahverdi A, Soucy G (2012) Thermogravimetric analysis of single-walled carbon nanotubes synthesized by induction thermal plasma. J Therm Anal Calorim 110:1079–85CrossRefGoogle Scholar
  9. 9.
    Szepvolgyi J, Markovic Z, Todorovic-Markovic B, Nikolic Z, Mohai I, Farkas Z, Toth M, Kovats E, Scheier P, Feil S (2006) Effects of precursors and plasma parameters on fullerene synthesis in RF thermal plasma reactor. Plasma Chem Plasma Process 26:597–608CrossRefGoogle Scholar
  10. 10.
    Wang C, Inazaki A, Shiraia T, Tanaka Y, Sakuta T, Takikawa H, Matsuo H (2003) Effect of ambient gas and pressure on fullerene synthesis in induction thermal plasma. Thin Solid Films 425:41–8CrossRefGoogle Scholar
  11. 11.
    Berghaus JO, Meunier JL, Gitzhofer F (2004) Monitoring and control of RF thermal plasma diamond deposition via substrate biasing. Meas Sci Technol 15:161–4CrossRefGoogle Scholar
  12. 12.
    Matsumoto S, Hino M, Kobayashi T (1987) Synthesis of diamond films in a rf induction thermal plasma. Appl Phys Lett 51:737–9CrossRefGoogle Scholar
  13. 13.
    Pedersen JD, Esposito HJ, Teh KS (2011) Direct synthesis and characterization of optically transparent conformal zinc oxide nanocrystalline thin films by rapid thermal plasma CVD. Nanoscale Res Lett 6(568):1–12Google Scholar
  14. 14.
    Nutsch G (2011) Atmospheric induction plasma spraying. High Temp Mater Process 15:61–74.  https://doi.org/10.1615/HighTempMatProc.v15.i1.80 CrossRefGoogle Scholar
  15. 15.
    Shinoda K, Kojima Y, Yoshida T (2005) In situ measurement system for deformation and solidification phenomena of yttria-stabilized zirconia droplets impinging on quartz glass substrate under plasma-spraying conditions. J Therm Spray Technol 14(4):511–7CrossRefGoogle Scholar
  16. 16.
    Tanaka H, Osawa T, Moriyoshi Y, Kurihara M, Maruyama S, Ishigaki T (2004) Improvement of the anode performance of graphite particles through surface modification in RF thermal plasma. Thin Solid Films 457:209–16CrossRefGoogle Scholar
  17. 17.
    Golightly DW, Montaser A (1987) Inductively coupled plasmas in analytical atomic spectrometry. Wiley, LondonGoogle Scholar
  18. 18.
    Boulos MI, Fauchais P, Pfender E (1994) Thermal plasmas fundamentals and applications volume 1. Plenum Publishing Corporation, New YorkGoogle Scholar
  19. 19.
    Akao M, Kuraishi K, Tanaka Y, Uesugi Y, Ishijima T, Yoshida T (2013) Temperature evolution in a large volume planar type of modulated thermal plasmas. In: International Symposium Plasma Chem. ISPC-21 247Google Scholar
  20. 20.
    Tial MKS, Irie H, Maruyama Y, Tanaka Y, Uesugi Y, Ishijima T (2016) Fundamentals of planar-type inductively coupled thermal plasmas on a substrate for large-area material processing 2016. Jpn J Appl Phys 55(7S2):07LB03CrossRefGoogle Scholar
  21. 21.
    Tial MKS, Tanaka Y, Akao M, Uesugi Y, Ishijima T (2016) Fundamental properties of a planar type of inductively coupled thermal plasmas with current modulation. J Phys D Appl Phys 49:385204CrossRefGoogle Scholar
  22. 22.
    Tial MKS, Tanaka Y, Maruyama Y, Tsuchiya T, Uesugi Y, Ishijima T (2017) Uniform surface oxidation of an Si substrate by a planar modulated inductively coupled thermal plasma with molecular gas feed. Plasma Chem Plasma Process 37(3):857-76CrossRefGoogle Scholar
  23. 23.
    Tanaka Y, Irie H, Maruyama Y, Tial Mai Kai Suan, Uesugi Y, Ishijima T, Yoshida T, Yukimoto T, Kawaura H (2015)Development of a loop-type of inductively coupled thermal plasmas with molecular gas injection for large-area uniform materials processings. In: International Symposium Plasma Chem. ISPC-22 O-21-3Google Scholar
  24. 24.
    Okumura T, Kawaura H (2013) Elongated inductively coupled thermal plasma torch operable at atmospheric pressure. Jpn J Appl Phys 52:05EE01CrossRefGoogle Scholar
  25. 25.
    Okumura T, Eriguchi K, Saitoh M, Kawaura H (2014) Annealing performance improvement of elongated inductively coupled plasma torch and its application to recovery of plasma. Jpn J Appl Phys 53:03DG01CrossRefGoogle Scholar
  26. 26.
    Maruyama Y, Tanaka Y, Irie H, Tsuchiya T, Tial Mai Kai Suan, Uesugi Y, Ishijima T, Yukimoto T, Kawaura H (2016) Rapid surface oxidation of the Si substrate using longitudinally long Ar/O\(_{2}\) loop type of inductively coupled thermal plasmas. IEEE Trans Plasma Sci 44:3164–71CrossRefGoogle Scholar
  27. 27.
    Hasegawa I, Yamaguchi T, Suga H (2007) Mechanism of oxidation of Si surfaces exposed to O\(_{2}\)/Ar microwave-excited plasma Jpn. J Appl Phys 46:98–104CrossRefGoogle Scholar
  28. 28.
    Deal BE, Grove AS (1965) General relationship for the thermal oxidation of silicon. J Appl Phys 36:3770–8CrossRefGoogle Scholar
  29. 29.
    Rasband, ImageJ W S (1997–2012) U. S. National Institutes of Health, Bethesda, Maryland, USA, http://rsb.info.nih.gov/ij/
  30. 30.
    Fargeix A, Ghibaudo G, Kamarinos G (1983) A revised analysis of dry oxidation of silicon. J Appl Phys 54:2878–80CrossRefGoogle Scholar
  31. 31.
    Fargeix A, Ghibaudo G (1983) Dry oxidation of silicon: a new model of growth including relaxation of stress by viscous flow. J Appl Phys 54:7153–8CrossRefGoogle Scholar
  32. 32.
    Dimitrijev Sima, Barry Harrison H (1996) Modeling the growth of thin silicon oxide films on silicon. J Appl Phys 80:2467–70CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Takumi Tsuchiya
    • 1
  • Yasunori Tanaka
    • 1
  • Y. Maruyama
    • 1
  • A. Fujita
    • 1
  • M. K. S. Tial
    • 1
  • Y. Uesugi
    • 1
  • T. Ishijima
    • 1
  • T. Yukimoto
    • 2
  • H. Kawaura
    • 2
  1. 1.Faculty of Electrical Engineering and Computer ScienceKanazawa UniversityKakuma, KanazawaJapan
  2. 2.CV Research CorporationFutamata, IchikawaJapan

Personalised recommendations