Plasma Chemistry and Plasma Processing

, Volume 38, Issue 3, pp 621–635 | Cite as

Formation of Copper–Nickel Alloy from Their Oxide Mixtures Through Reduction by Low-Temperature Hydrogen Plasma

  • Kali Charan Sabat
  • Raja Kishore Paramguru
  • Barada Kanta Mishra
Original Paper


The paper presents experimental results of a new method of production of nanoparticles of copper–nickel alloys from the reduction of the mixture of cupric oxide (CuO) and nickel oxide (NiO) by low-temperature hydrogen plasma in a microwave assisted hydrogen plasma set-up. The microwave power and hydrogen flow-rate used for the current investigation are 750 W and 2.5 × 10−6 m3 s−1 respectively. The addition of NiO–CuO, in proportion to result in alloys of 90Cu:10Ni and 70Cu:30Ni, not only removed the induction period from the kinetic plot of CuO reduction but also, improved the reduction rate of CuO. The XRD analysis of the product exhibited a single-phase peak with a d-spacing lying between Cu and Ni, which satisfies the Vergard’s law, indicating the Cu–Ni alloy formation. The lattice parameter decreases from 3.6221 (90Cu:10Ni) to 3.595 Ǻ (70Cu:30Ni), due to the smaller atomic radius of Ni (0.1246 nm) than that of Cu (0.1278 nm). The crystallite size, calculated by applying Scherrer’s formula, in both cases is found to be 31.7 nm.


Cu–Ni alloy Low-temperature hydrogen plasma Reduction of metal oxides Vergard’s law Nanoparticles 



Dr. Kali Charan Sabat is thankful to CSIR, New Delhi for providing financial support to carry out research work under the Project MINMET, Project No. ESC 205.


  1. 1.
    Shams El Din AM, El Dahshan ME, Taj El Din AM (2000) Dissolution of copper and copper–nickel alloys in aerated dilute HCl solutions. Desalination 130:89–97. CrossRefGoogle Scholar
  2. 2.
    Jena PK, Brocchi EA, Motta MS (2004) Preparation of Cu–Ni alloys through a new chemical route. Metall Mater Trans B 35:1107–1112. CrossRefGoogle Scholar
  3. 3.
    Ghosh SK, Grover AK, Dey GK, Totlani MK (2000) Nanocrystalline Ni–Cu alloy plating by pulse electrolysis. Surf Coat Technol 126:48–63. CrossRefGoogle Scholar
  4. 4.
    Chatterjee J, Bettge M, Haik Y, Jen Chen C (2005) Synthesis and characterization of polymer encapsulated Cu–Ni magnetic nanoparticles for hyperthermia applications. J Magn Magn Mater 293:303–309CrossRefGoogle Scholar
  5. 5.
    Froes FH, Senkov ON, Baburaj EG (2001) Synthesis of nanocrystalline materials—an overview. Mater Sci Eng A 301:44–53. CrossRefGoogle Scholar
  6. 6.
    Kazeminezhad I, Schwarzacher W (2002) Studying the transition from multilayer to alloy in the Ni–Cu system. J Magn Magn Mater 240:467–468. CrossRefGoogle Scholar
  7. 7.
    Glibin VP, Kuznetsov BV, Vorobyova TN (2005) Investigation of the thermodynamic properties of Cu–Ni alloys obtained by electrodeposition or by casting. J Alloys Compd 386:139–143. CrossRefGoogle Scholar
  8. 8.
    Li YD, Li LQ, Liao HW, Wang HR (1999) Preparation of pure nickel, cobalt, nickel–cobalt and nickel–copper alloys by hydrothermal reduction. J Mater Chem 9:2675–2677. CrossRefGoogle Scholar
  9. 9.
    Bonet F, Grugeon S, Dupont L et al (2003) Synthesis and characterization of bimetallic Ni–Cu particles. J Solid State Chem 172:111–115. CrossRefGoogle Scholar
  10. 10.
    Niu HL, Chen QW, Lin YS et al (2004) Hydrothermal formation of magnetic Ni–Cu alloy nanocrystallites at low temperatures. Nanotechnology 15:1054–1058. CrossRefGoogle Scholar
  11. 11.
    Rao GR, Mishra BG, Sahu HR (2004) Synthesis of CuO, Cu and CuNi alloy particles by solution combustion using carbohydrazide and N-tertiarybutoxy-carbonylpiperazine fuels. Mater Lett 58:3523–3527. CrossRefGoogle Scholar
  12. 12.
    Davis JR (1998) Metals handbook. Met Handb. Google Scholar
  13. 13.
    Niu Y, Gesmundo F, Farnè G et al (2000) The air oxidation of a nanocrystalline Cu-10 wt%Ni alloy at 800 °C. Corros Sci 42:1763–1777. CrossRefGoogle Scholar
  14. 14.
    Agnew SR, Elliott BR, Youngdahl CJ et al (2000) Microstructure and mechanical behavior of nanocrystalline metals. Mater Sci Eng A 285:391–396. CrossRefGoogle Scholar
  15. 15.
    Durivault L, Brylev O, Reyter D et al (2007) Cu–Ni materials prepared by mechanical milling: their properties and electrocatalytic activity towards nitrate reduction in alkaline medium. J Alloys Compd 432:323–332. CrossRefGoogle Scholar
  16. 16.
    Sabat KC, Paramguru RK, Mishra BK (2017) Reduction of oxide mixtures of (Fe2O3 + CuO) and (Fe2O3 + Co3O4) by low-temperature hydrogen plasma. Plasma Chem Plasma Process 37:979–995. CrossRefGoogle Scholar
  17. 17.
    Sabat KC, Rajput P, Paramguru RK et al (2014) Reduction of oxide minerals by hydrogen plasma: an overview. Plasma Chem Plasma Process 34:1–23. CrossRefGoogle Scholar
  18. 18.
    Rajput P, Sabat KC, Paramguru RK et al (2014) Direct reduction of iron in low temperature hydrogen plasma. Ironmak Steelmak 41:721–731. CrossRefGoogle Scholar
  19. 19.
    Sabat KC, Paramguru RK, Pradhan S, Mishra BK (2015) Reduction of cobalt oxide (Co3O4) by low temperature hydrogen plasma. Plasma Chem Plasma Process 35:387–399. CrossRefGoogle Scholar
  20. 20.
    Sabat KC, Paramguru RK, Mishra BK (2016) Reduction of copper oxide by low-temperature hydrogen plasma. Plasma Chem Plasma Process 36:1111–1124. CrossRefGoogle Scholar
  21. 21.
    Sabat KC, Murphy AB (2017) Hydrogen plasma processing of iron ore. Metall Mater Trans B 48:1561–1594. CrossRefGoogle Scholar
  22. 22.
    Rajput P, Bhoi B, Paramguru RK, Mishra BK (2016) Effect of plasma state and alloying addition on reduction of Fe2O3 by a low-temperature hydrogen plasma. High Temp Mater Process 20:317–332CrossRefGoogle Scholar
  23. 23.
    Chen F, Mohassab Y, Zhang S, Sohn HY (2015) Kinetics of the reduction of hematite concentrate particles by carbon monoxide relevant to a novel flash ironmaking process. Metall Mater Trans B Process Metall Mater Process Sci 46:1716–1728. CrossRefGoogle Scholar
  24. 24.
    Wang H, Sohn HY (2013) Hydrogen reduction kinetics of magnetite concentrate particles relevant to a novel flash ironmaking process. Metall Mater Trans B Process Metall Mater Process Sci 44:133–145. CrossRefGoogle Scholar
  25. 25.
    Abolpour B, Afsahi MM, Soltani Goharrizi A, Azizkarimi M (2017) Investigation of in-flight reduction of magnetite concentrate by hydrogen. Ironmak Steelmak. Google Scholar
  26. 26.
    Rodriguez JA, Hanson JC, Frenkel AI et al (2002) Experimental and theoretical studies on the reaction of H2 with NiO: role of O vacancies and mechanism for oxide reduction. J Am Chem Soc 124:346–354. CrossRefGoogle Scholar
  27. 27.
    Richardson JT, Scates R, Twigg MV (2003) X-ray diffraction study of nickel oxide reduction by hydrogen. Appl Catal A Gen 246:137–150CrossRefGoogle Scholar
  28. 28.
    Jeangros Q, Hansen TW, Wagner JB et al (2013) Reduction of nickel oxide particles by hydrogen studied in an environmental TEM. J Mater Sci 48:2893–2907. CrossRefGoogle Scholar
  29. 29.
    Rodriguez JA, Kim JY, Hanson JC et al (2003) Reduction of CuO in H2: in situ time-resolved XRD studies. Catal Lett 85:247–254. CrossRefGoogle Scholar
  30. 30.
    Kim JY, Rodriguez A, Hanson JC et al (2003) Reduction of CuO and Cu2O with H2: H embedding and kinetic effects in the formation of suboxides. J Am Chem Soc 125:10684–10692CrossRefGoogle Scholar
  31. 31.
    Cahn RW, Haasen P (1996) Physical metallurgy—vol 1. Phys Metall 1:1042. Google Scholar
  32. 32.
    Cahn RW, Haasen P (1996) Physical metallurgy—vol 2. Phys Metall 2:944. Google Scholar
  33. 33.
    Hassouni K, Gicquel A, Capitelli M, Loureiro J (1999) Chemical kinetics and energy transfer in moderate pressure H2 plasmas used in diamond MPACVD processes. Plasma Sources Sci Technol 8:494–512. CrossRefGoogle Scholar
  34. 34.
    Piotrowski K, Mondal K, Wiltowski T et al (2007) Topochemical approach of kinetics of the reduction of hematite to wustite. Chem Eng J 131:73–82. CrossRefGoogle Scholar
  35. 35.
    Jacob KT, Raj S, Rannesh L (2007) Vegard’s law: a fundamental relation or an approximation? Int J Mater Res 98:776–779. CrossRefGoogle Scholar
  36. 36.
    Bindu P, Thomas S (2014) Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. J Theor Appl Phys 8:123–134. CrossRefGoogle Scholar
  37. 37.
    Cullity SR, Stock BD (2001) Elements of X-ray diffraction. Prentice-Hall, Englewood CliffsGoogle Scholar
  38. 38.
    Suryanarayana C, Norton MG (1998) X-rays and diffraction. X-ray Diffr. Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Kali Charan Sabat
    • 1
    • 2
    • 3
  • Raja Kishore Paramguru
    • 3
  • Barada Kanta Mishra
    • 2
    • 4
  1. 1.Parala Maharaja Engineering College (A Constituent College of BPUT, Odisha)Sitalapalli, BrahmapurIndia
  2. 2.CSIR-Institute of Minerals and Materials TechnologyBhubaneswarIndia
  3. 3.KIIT UniversityBhubaneswarIndia
  4. 4.Indian Institute of Technology, GoaFarmagudi, PondaIndia

Personalised recommendations