Plasma Chemistry and Plasma Processing

, Volume 38, Issue 3, pp 587–598 | Cite as

Behavior of Carbon-Containing Impurities in the Process of Plasma-Chemical Distillation of Sulfur

  • Leonid Mochalov
  • Roman Kornev
  • Alexander Logunov
  • Mikhail Kudryashov
  • Aleksandr Mashin
  • Andrey Vorotyntsev
  • Vladimir Vorotyntsev
Original Paper


Sulfur was purified by plasma-chemical distillation at low pressure (0.1 Torr) under dynamic vacuum conditions. RF (40 MHz) non-equilibrium plasma discharge was used for initiation of chemical interactions. The carbon-containing impurities behavior was studied. The possible mechanism of their conversion has been discussed. The effectiveness of the suggested method has been compared with the ‘traditional’ distillation in terms of removal of heterophase impurities.


Plasma-chemical distillation Carbon impurities behavior Optical emission spectroscopy Sulfur purification 



The reported study was funded by RFBR according to the Research Project No. 16-08-00777 and The Ministry of Education and Sciences of the Russian Federation within the framework of the state task in the field of scientific activity (Grant No. 11/17-01.10) in the part concerning laser ultramicroscopy investigations of the sulfur bulk samples and chromate-mass-spectroscopy of the exhausted gas mixtures. Setup for plasma-chemical distillation and optical-emission spectroscopy measurements were funded by the basic part of the State Task of the Ministry of Education and Science of Russia No. 3.6507.2017/8.9.


  1. 1.
    Snopatin GE, Shiryaev VS, Plotnichenko VG, Dianov EM, Churbanov MF (2009) High-purity chalcogenide glasses for fiber optics. Inorg Mater 45(13):1439–1460CrossRefGoogle Scholar
  2. 2.
    Adam J-L, Zhang X (2014) Chalcogenide glasses: preparation, properties and applications, handbook. Woodhead Publishing Ltd., CambridgeGoogle Scholar
  3. 3.
    Devyatykh GG, Churbanov MF, Scripachev IV, Dianov EM, Plotnichenko VG (1989) Role of impurities in optical losses of chalcogenide glass fibers. In: SPIE proceedings of the 1048 infrared fiber optics, pp 80–84Google Scholar
  4. 4.
    Murphy TJ, Clabaugh WS, Gilchrist R (1960) Preparation of sulfur of high purity. J Res Natl Bureau Stand A Phys Chem 64A(4):355–358CrossRefGoogle Scholar
  5. 5.
    Devyatykh GG, Churbanov MF (1968) Deep purification of sulfur by countercurrent crystallization. Russ J Appl Chem 41(11):2392–2398Google Scholar
  6. 6.
    Devyatykh GG, Churbanov MF (1997) High-purity chalcogens, handbook. Nizhny Novgorod Nizhegorodsk Univ, RussiaGoogle Scholar
  7. 7.
    Bacon Raymond F, Fanelli Rocco (1943) The viscosity of sulfur. J Am Chem Soc 65(4):639–648CrossRefGoogle Scholar
  8. 8.
    Vorotyntsev VM, Malyshev VM (2012) Fine purification of sulfur by countercurrent-flow melt crystallization with mechanical comminution of the crystals. Teor Osn Khim Tekhnol 46:563–567Google Scholar
  9. 9.
    Churbanov MF (1977) Deep purification of sulfur and selenium by thermal method. J Obtain Anal Subst Corky GGU V2(50):36–39 (in Russian)Google Scholar
  10. 10.
    Sukhanov MV, Storozheva TI, Yevdokimov II, Kotereva TV (2017) Fine purification of monoisotopic 32S and 34S. Inorg Mater 53(2):142–147CrossRefGoogle Scholar
  11. 11.
    Adamchik SA, Malyshev AYu, Bulanov AD, Bab’eva EN (2001) Fine purification of sulfur from carbon by high-temperature oxidation. Inorg Mater 37(5):469–472CrossRefGoogle Scholar
  12. 12.
    Scripachev IV, Vinokurov AK, Churbanov MF (1988) About interaction of arsenic with quartz glass. J High-Pure Subst 1:221–222Google Scholar
  13. 13.
    Shiryaev VS, Ketkova LA, Churbanov MF, Potapov AM, Troles HouizotJP, Adam J-L, Sibirkin AA (2009) Heterophase inclusions and dissolved impurities in Ge25Sb10S65 glass. J Non-Cryst Solids 355:2640–2646CrossRefGoogle Scholar
  14. 14.
    Churbanov MF, Scripachev IV, Snopatin GE, Borisevich VG, Plotnichenko VG (1994) An influence of carbon impurities on As–S and As–Se glass optical transmission. In: Proceedings of the IX international symposium on non-oxide glasses, Hangzhou, China, Extended Abstracts: 506Google Scholar
  15. 15.
    Devyatykh GG, Churbanov MF, Scripachev IV, Shipunov VA (1990) Heterophase impurity inclusions in chalcogenide glass optical fibers. In: Proceedings of the SPIE 1228 (infrared fibers II), pp 116–126Google Scholar
  16. 16.
    Dianov EM, Petrov MY, Plotnichenko VG, Sysoev VK (1982) Quantum Electron 9:798–800Google Scholar
  17. 17.
    Lines ME (1984) Scattering loss in fiber materials. II. Numerical evaluations. J Appl Phys 55(2):4052–4063CrossRefGoogle Scholar
  18. 18.
    Shiryaev VS, Churbanov MF (2017) Recent advances in preparation of high-purity chalcogenide glasses for mid-IR photonics. J Non-Cryst Solids. Google Scholar
  19. 19.
    Gusev AV, Sukhanov AYu, Kornev RA (2008) Behavior of carbon containing impurities during plasma synthesis of trichlorosilane. High Energy Chem 42(1):56–58CrossRefGoogle Scholar
  20. 20.
    Gusev AV, Kornev RA, Sukhanov AYu (2008) Behavior of organochlorine impurities in the process of plasma-enhanced synthesis of trichlorosilane. High Energy Chem 42(4):324–332CrossRefGoogle Scholar
  21. 21.
    Mochalov LA, Kornev RA, Churbanov MF, Sennikov PG (2014) Investigation of the process of hydrogen reduction of 32S from 32SF6 via RF capacitive plasma discharge. J Fluor Chem 160:48–51CrossRefGoogle Scholar
  22. 22.
    Mochalov LA, Lobanov AS, Nezhdanov AV, Kostrov AV, Vorotyntsev VM (2015) Preparation of Ge–S–I and Ge–Sb–S–I glasses by plasma-enhanced chemical vapor deposition. J Non-Cryst Solids 423–424:76–80CrossRefGoogle Scholar
  23. 23.
    Bacon RF, Fanelli R (1942) Purification of sulfur. Ind Eng Chem 34(9):1043–1048CrossRefGoogle Scholar
  24. 24.
    Wartenberg H (1956) Entfernung von Kohlenstoff aus Schwefel. Z Anorg Allg Chem 286(5–6):243–246CrossRefGoogle Scholar
  25. 25.
    Touro FJ, Wiewiorowski TK (1966) Molten sulfur chemistry. 11. The solubility of sulfur dioxide in molten sulfur. J Phys Chem 70(11):3531–3534CrossRefGoogle Scholar
  26. 26.
    Adamchic S, (2001) Deep purification of sulfur from carbon impurity. PhD thesis Nizhni NovgorodGoogle Scholar
  27. 27.
    Scripachev IV (1999) High-pure glasses of As–S, As–Se and Ge–As–Se for fibre optics, Thesis of Doctor of Sciences, Nizhni NovgorodGoogle Scholar
  28. 28.
    Churbanov MF, Snopatin GE, Sozin AYu, Skripachev IV (2017) Molecular composition of organic impurities in extrapure sulfur. Inorg Mater 53(9):969–972CrossRefGoogle Scholar
  29. 29.
    Berkowitz J, Marquart JR (1963) Equilibrium composition of sulfur vapor. J Chem Phys 39(2):275CrossRefGoogle Scholar
  30. 30.
    Tashiro V (2008) Electron impact excitations of S2, Preprint, submitted to Elsevier, Feb. 2; arXiv: 0712.4098v2 Physics. ChemphGoogle Scholar
  31. 31.
    Erdevdy NM, Shpenik OB, Markush PP (2014) Electron-impact excitation of gas-phase sulfur. J Appl Spectrosc 82(1):19–24CrossRefGoogle Scholar
  32. 32.
    Brotton SJ, McConkey JW (2011) J Chem Phys 139:204301–204309CrossRefGoogle Scholar
  33. 33.
    Raizer YuP (1987) Fizika gazovogo razryada. Nauka, Moscow (in Russian) Google Scholar
  34. 34.
    Devyatykh GG, Karpov YuA, Krylov VA, Lazukina OP (1987) Laser-ultramicroscopic method of determining suspended particles in high-purity liquids. Talanta 34(1):133–136CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Leonid Mochalov
    • 1
    • 2
    • 3
  • Roman Kornev
    • 2
  • Alexander Logunov
    • 2
    • 3
  • Mikhail Kudryashov
    • 3
  • Aleksandr Mashin
    • 3
  • Andrey Vorotyntsev
    • 2
  • Vladimir Vorotyntsev
    • 2
  1. 1.Department of Physics and Optical ScienceUniversity of North Carolina at CharlotteCharlotteUSA
  2. 2.Nizhny Novgorod State Technical University n.a. R.E. AlekseevNizhny NovgorodRussia
  3. 3.Lobachevsky UniversityNizhny NovgorodRussia

Personalised recommendations