Plasma Chemistry and Plasma Processing

, Volume 38, Issue 3, pp 485–501 | Cite as

Nitrogen Fixation and NO Conversion using Dielectric Barrier Discharge Reactor: Identification and Evolution of Products

  • Xiaolong Tang
  • Jiangen Wang
  • Honghong Yi
  • Shunzheng Zhao
  • Fengyu Gao
  • Chao chu
Original Paper


The recombination (synthesis and conversion) of nitric oxide was investigated using dielectric barrier discharge reactor at atmospheric pressure. In this work, products identification and its evolution of different gas components have been studied. In the NO/O2/N2 systems, nitric oxide (NO) can be removed via chemical oxidation and chemical reduction, and corresponding products are NO2 and N2, respectively. In the O2/N2 systems, N2O5 producing from the interaction of NO3 with NO2 was also observed. There is an optimum SED at which the highest NOx yield and best NO conversion efficiency will be achieved. In the H2O/O2/N2 systems, the formation of NO2, HNO2 and HNO3 were observed in both NF and NO conversion. The N2O molecule, as a byproduct of plasma chemical reaction, was observed in all the experiments when the H2O or O2 is presence in the simulated gas. The lowest energy cost of NO conversion is achieved at the SED of 1250 J/L.


Interconversion Non-thermal plasma Specific energy density HNO2 N2



This study was primarily supported by National Key R&D Program of China (2017YFC0210303-01). This work was also partly supported by National Natural Science Foundation of China (21677010, U1660109).


  1. 1.
    Hessel V, Anastasopoulou A, Wang Q, Kolb G, Lang J (2013) Catal Today 211:9–28CrossRefGoogle Scholar
  2. 2.
    Penetrante BM, Hsiao MC, Merritt BT, Vogtlh GE, Wallman PH (1995) IEEE Trans Plasma Sci 23:679–689CrossRefGoogle Scholar
  3. 3.
    McLarnon CR, Penetrante BM (1998) Society of automotive engineers fall fuels and lubricants meeting 1998, San Francisco, CA, pp 19–22Google Scholar
  4. 4.
    Kossyi AYKIA, Matveyev AA, Silakov VP (1992) Plasma Sources Sci Technol 1:207–220CrossRefGoogle Scholar
  5. 5.
    Fridman A, Chirokov A, Gutsol A (2005) J Phys D Appl Phys 38:R1–R24CrossRefGoogle Scholar
  6. 6.
    Teodoru S, Kusano Y, Bogaerts A (2012) Plasma Process Polym 9:652–689CrossRefGoogle Scholar
  7. 7.
    McLarnon CR, Penetrante BM (1998) Society of automotive engineers fall fuels and lubricants meeting, p 982434Google Scholar
  8. 8.
    Patil BS, Cherkasov N, Lang J, Ibhadon AO, Hessel V, Wang Q (2016) Appl Catal B 194:123–133CrossRefGoogle Scholar
  9. 9.
    Miessner H, Francke KP, Rudolph R (2002) Appl Catal B Environ 36:53–62CrossRefGoogle Scholar
  10. 10.
    Tonkyn RG, Barlow SE, Hoard JW (2003) Appl Catal B 40:207–217CrossRefGoogle Scholar
  11. 11.
    Atkinson R, Baulch DL, Cox RA, Hampson RF, Kerr JA, Rossi MJ, Troe J (1997) J Phys Chem Ref Data 26:1329CrossRefGoogle Scholar
  12. 12.
    Fridman A (2012) Plasma chemistry. Cambridge University Press, New YorkGoogle Scholar
  13. 13.
    Penetrante BM, Brusasco RM, Merritt BT, Pitz WJ, Vogtlin GE, Kung MC, Kung HH, Wan CZ, Voss KE (1998) Society of automotive engineers fall fuels and lubricants meeting, p 982508Google Scholar
  14. 14.
    Fujii YAT, Yoshioka N, Rea M (2001) J Electrostat 51–52:8–14CrossRefGoogle Scholar
  15. 15.
    Zhu A-M, Sun Q, Niu J-H, Xu Y, Song Z-M (2005) Plasma Chem Plasma Process 25:371–386CrossRefGoogle Scholar
  16. 16.
    Jõgi I, Levoll E, Raud J (2016) Chem Eng J 301:149–157CrossRefGoogle Scholar
  17. 17.
    Nakamoto K (2009) Infrared and Raman spectra of inorganic and coordination compounds. John Wiley & Sons, Inc., Hoboken, New JerseyGoogle Scholar
  18. 18.
    Hadjiivanov KI (2000) Catal Rev 42:71–144CrossRefGoogle Scholar
  19. 19.
    Grundmann CTS (2009) Int J Heat Fluid Flow 30:394–402CrossRefGoogle Scholar
  20. 20.
    Borcia G, Anderson CA, Brown NM (2003) Plasma Sources Sci Technol 12:335–344CrossRefGoogle Scholar
  21. 21.
    Kantcheva M, Cayirtepe I (2006) J Mol Catal A Chem 247:88–98CrossRefGoogle Scholar
  22. 22.
    Bibart CH, Ewing GE (1974) J Chem Phys 61:1284–1292CrossRefGoogle Scholar
  23. 23.
    Cantrell CA, Davidson JA, McDaniel AH, Shetter RE, Calvert JG (1988) Chem Phys Lett 148:358–363CrossRefGoogle Scholar
  24. 24.
    Guillory WA, Hunter CE (1971) J Chem Phys 54:598–603CrossRefGoogle Scholar
  25. 25.
    McGraw GE, Bernitt DL, Hisatsune IC (1965) J Chem Phys 42:237CrossRefGoogle Scholar
  26. 26.
    Al-Abduly A, Christensen P (2015) Plasma Sources Sci Technol 24:065006CrossRefGoogle Scholar
  27. 27.
    Golde M (1988) Int J Chem Kinet 20:75–92CrossRefGoogle Scholar
  28. 28.
    Wang T, Sun B-M, Xiao H-P, Wang D, Zhu X-Y, Zhong Y-F (2013) Plasma Chem Plasma Process 33:681–690CrossRefGoogle Scholar
  29. 29.
    Yin S-E, Sun B-M, Gao X-D, Xiao H-P (2009) Plasma Chem Plasma Process 29:421–431CrossRefGoogle Scholar
  30. 30.
    Jones LH, Badger RM, Moore GE (1951) J Chem Phys 19:1599CrossRefGoogle Scholar
  31. 31.
    Eliasson B, Hirth M, Kogelschatz U (1987) J Phys D Appl Phys 20:1421–1437CrossRefGoogle Scholar
  32. 32.
    Zhao G-B, Hu X, Argyle MD, Radosz M (2004) Ind Eng Chem Res 43:5077–5088CrossRefGoogle Scholar
  33. 33.
    Higashi SUM, Suzuki N, Fujii K, Trans IEEE (1992) Plasma Sci 20:1–12CrossRefGoogle Scholar
  34. 34.
    NIST chemical kinetics database.
  35. 35.
    Green JHD (2001) Plasma Chem Plasma Process 21:459–481CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Xiaolong Tang
    • 1
  • Jiangen Wang
    • 1
  • Honghong Yi
    • 1
  • Shunzheng Zhao
    • 1
  • Fengyu Gao
    • 1
  • Chao chu
    • 1
  1. 1.Department of Environmental Engineering, School of Energy and Environmental EngineeringUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations