Plasma Chemistry and Plasma Processing

, Volume 38, Issue 3, pp 503–515 | Cite as

Hydrogen Production from Methane Decomposition in Cold Plasma Reactor with Rotating Electrodes

Original Paper
  • 96 Downloads

Abstract

Methane decomposition in plasma reactor is a green process and can be considered as an economical route to produce COx-free hydrogen. The present study aimed to design and construct a plasma reactor with a unique feature of stable operation to provide an opportunity for direct decomposition of methane at almost ambient temperature. The reactor performance was evaluated in terms of hydrogen selectivity and methane conversion under various feed flow rate, plasma power, and electrode velocity. The main product was hydrogen with a small amount of C2 hydrocarbons where C2 refers to ethane, ethylene, and acetylene. In addition, the role of the degree of non-equilibrium state in plasma reactor performance was studied to provide a better understanding of the complex behavior of the cold plasma reactor. Better performance was observed through the rotation of high voltage electrode, compared to fixed electrode in terms of methane conversion attributed to the uniform dispersion of plasma power and effective distribution of active species.

Keywords

Methane Decomposition Hydrogen Rotating electrodes Plasma 

References

  1. 1.
    Amirante R, Cassone E, Distaso E, Tamburrano P (2017) Overview on recent developments in energy storage: mechanical, electrochemical and hydrogen technologies. Energy Convers Manag 132:372–387CrossRefGoogle Scholar
  2. 2.
    Zhou L, Enakonda LR, Harb M, Saih Y, Aguilar-Tapia A, Ould-Chikh S, J-l Hazemann, Li J, Wei N, Gary D (2017) Fe catalysts for methane decomposition to produce hydrogen and carbon nano materials. Appl Catal B 208:44–59CrossRefGoogle Scholar
  3. 3.
    Pudukudy M, Yaakob Z, Takriff MS (2016) Methane decomposition into COx free hydrogen and multiwalled carbon nanotubes over ceria, zirconia and lanthana supported nickel catalysts prepared via a facile solid state citrate fusion method. Energy Convers Manag 126:302–315CrossRefGoogle Scholar
  4. 4.
    Shen Y, Lua AC (2015) Polyol synthesis of nickel–copper based catalysts for hydrogen production by methane decomposition. Int J Hydrogen Energy 40(1):311–321CrossRefGoogle Scholar
  5. 5.
    Serrano DP, Botas JA, Pizarro P, Moreno I, Gomez G (2015) Hydrogen production through catalytic methane decomposition promoted by pure silica materials. Int J Hydrogen Energy 40(15):5237–5243CrossRefGoogle Scholar
  6. 6.
    Al-Hassani AA, Abbas HF, Daud WW (2014) Production of COx-free hydrogen by the thermal decomposition of methane over activated carbon: catalyst deactivation. Int J Hydrogen Energy 39(27):14783–14791CrossRefGoogle Scholar
  7. 7.
    Shapoval V, Marotta E (2015) Investigation on plasma-driven methane dry reforming in a self-triggered spark reactor. Plasma Processes Polym 12(8):808–816CrossRefGoogle Scholar
  8. 8.
    Horvath G, Zahoran M, Mason N, Matejcik S (2011) Methane decomposition leading to deposit formation in a DC positive CH4–N2 corona discharge. Plasma Chem Plasma Process 31(2):327–335CrossRefGoogle Scholar
  9. 9.
    Hsieh L-T, Lee W-J, Chen C-Y, Chang M-B, Chang H-C (1998) Converting methane by using an RF plasma reactor. Plasma Chem Plasma Process 18(2):215–239CrossRefGoogle Scholar
  10. 10.
    Lee DH, Song Y-H, Kim K-T, Lee J-O (2013) Comparative study of methane activation process by different plasma sources. Plasma Chem Plasma Process 33(4):647–661CrossRefGoogle Scholar
  11. 11.
    Li T, Rehmet C, Cheng Y, Jin Y, Cheng Y (2017) Experimental comparison of methane pyrolysis in thermal plasma. Plasma Chem Plasma Process 37(4):1033–1049CrossRefGoogle Scholar
  12. 12.
    Ghorbani Z, Parvin P, Reyhani A, Mortazavi S, Moosakhani A, Maleki M, Kiani S (2014) Methane decomposition using metal-assisted nanosecond laser-induced plasma at atmospheric pressure. J Phys Chem C 118(51):29822–29835CrossRefGoogle Scholar
  13. 13.
    Rahimpour M, Jahanmiri A, Shirazi MM, Hooshmand N, Taghvaei H (2013) Combination of non-thermal plasma and heterogeneous catalysis for methane and hexadecane co-cracking: effect of voltage and catalyst configuration. Chem Eng J 219:245–253CrossRefGoogle Scholar
  14. 14.
    Ogata A, Mizuno K, Kushiyama S, Yamamoto T (1998) Methane decomposition in a barium titanate packed-bed nonthermal plasma reactor. Plasma Chem Plasma Process 18(3):363–373CrossRefGoogle Scholar
  15. 15.
    Da Silva C, Ishikawa T, Santos S, Alves C, Martinelli A (2006) Production of hydrogen from methane using pulsed plasma and simultaneous storage in titanium sheet. Int J Hydrogen Energy 31(1):49–54CrossRefGoogle Scholar
  16. 16.
    Lotfalipour R, Ghorbanzadeh A, Mahdian A (2014) Methane conversion by repetitive nanosecond pulsed plasma. J Phys D Appl Phys 47(36):365201CrossRefGoogle Scholar
  17. 17.
    Sanchez-Gonzalez R, Kim Y, Rosocha LA, Abbate S (2007) Methane and ethane decomposition in an atmospheric-pressure plasma jet. IEEE Trans Plasma Sci 35(6):1669–1676CrossRefGoogle Scholar
  18. 18.
    Yang Y (2003) Direct non-oxidative methane conversion by non-thermal plasma: modeling study. Plasma Chem Plasma Process 23(2):327–346CrossRefGoogle Scholar
  19. 19.
    Morgan NN, ElSabbagh M (2017) Hydrogen production from methane through pulsed DC plasma. Plasma Chem Plasma Process 37(5):1375–1392CrossRefGoogle Scholar
  20. 20.
    Yang Y (2003) Direct non-oxidative methane conversion by non-thermal plasma: experimental study. Plasma Chem Plasma Process 23(2):283–296CrossRefGoogle Scholar
  21. 21.
    Pristavita R, Mendoza-Gonzalez N-Y, Meunier J-L, Berk D (2010) Carbon blacks produced by thermal plasma: the influence of the reactor geometry on the product morphology. Plasma Chem Plasma Process 30(2):267–279CrossRefGoogle Scholar
  22. 22.
    Pristavita R, Meunier J-L, Berk D (2011) Carbon nano-flakes produced by an inductively coupled thermal plasma system for catalyst applications. Plasma Chem Plasma Process 31(2):393–403CrossRefGoogle Scholar
  23. 23.
    Okeke L, Störi H (1991) Plasma-chemical decomposition of methane during diamond synthesis. Plasma Chem Plasma Process 11(4):489–499CrossRefGoogle Scholar
  24. 24.
    Li XD, Zhang H, Yan SX, Yan JH, Du CM (2013) Hydrogen production from partial oxidation of methane using an AC rotating gliding arc reactor. IEEE Trans Plasma Sci 41(1):126–132CrossRefGoogle Scholar
  25. 25.
    Zhang H, Du C, Wu A, Bo Z, Yan J, Li X (2014) Rotating gliding arc assisted methane decomposition in nitrogen for hydrogen production. Int J Hydrogen Energy 39(24):12620–12635CrossRefGoogle Scholar
  26. 26.
    Moshrefi MM, Rashidi F (2014) Hydrogen production from methane by DC spark discharge: effect of current and voltage. J Nat Gas Sci Eng 16:85–89CrossRefGoogle Scholar
  27. 27.
    Moshrefi MM, Rashidi F, Bozorgzadeh HR (2015) Use of a DC discharge in a plasma reactor with a rotating ground electrode for production of synthesis gas by partial oxidation of methane. Res Chem Intermed 41(9):5941–5959CrossRefGoogle Scholar
  28. 28.
    Moshrefi MM, Rashidi F, Bozorgzadeh HR, Haghighi ME (2013) Dry reforming of methane by DC spark discharge with a rotating electrode. Plasma Chem Plasma Process 33(2):453–466CrossRefGoogle Scholar
  29. 29.
    Moshrefi MM, Rashidi F, Bozorgzadeh HR, Zekordi SM (2012) Methane conversion to hydrogen and carbon black by DC-spark discharge. Plasma Chem Plasma Process 32(6):1157–1168CrossRefGoogle Scholar
  30. 30.
    Younessi-Sinaki M, Matida EA, Hamdullahpur F (2009) Kinetic model of homogeneous thermal decomposition of methane and ethane. Int J Hydrogen Energy 34(9):3710–3716CrossRefGoogle Scholar
  31. 31.
    Dors M, Nowakowska H, Jasiński M, Mizeraczyk J (2014) Chemical kinetics of methane pyrolysis in microwave plasma at atmospheric pressure. Plasma Chem Plasma Process 34(2):313–326CrossRefGoogle Scholar
  32. 32.
    Fincke JR, Anderson RP, Hyde T, Detering BA, Wright R, Bewley RL, Haggard DC, Swank WD (2002) Plasma thermal conversion of methane to acetylene. Plasma Chem Plasma Process 22(1):105–136CrossRefGoogle Scholar
  33. 33.
    Kim H-H, Teramoto Y, Ogata A, Takagi H, Nanba T (2016) Plasma catalysis for environmental treatment and energy applications. Plasma Chem Plasma Process 36(1):45–72CrossRefGoogle Scholar
  34. 34.
    Long H, Shang S, Tao X, Yin Y, Dai X (2008) CO2 reforming of CH4 by combination of cold plasma jet and Ni/γ-Al2O3 catalyst. Int J Hydrogen Energy 33(20):5510–5515CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chemical Engineering DepartmentAmirkabir University of TechnologyTehranIran

Personalised recommendations