Plasma Chemistry and Plasma Processing

, Volume 38, Issue 2, pp 365–378 | Cite as

The Processing of Pyrolysis Fuel Oil by Dielectric Barrier Discharge Plasma Torch

  • Atieh Khosravi
  • Mohammad Reza Khani
  • Elham Dejban Goy
  • Babak Shokri
Original Paper


In present paper, an atmospheric-pressure low-temperature plasma treatment of pyrolysis fuel oil (PFO) was investigated in dielectric barrier discharge plasma torch reactor. The effect of the applied voltage and the volume of feedstock, as the main parameters, on the cracking of PFO were studied. By increasing the applied voltage from 10 to 16 kV, the production rate of hydrocarbons containing methane, ethylene, acetylene, propane, propylene, and C4 rise 18 times. In this case, the production rate of hydrogen increases by approximately 14 times and reaches 7.27 × 10−3 mol/min for 16 kV. In the feedstock volume investigation, based on limitation of reactor volume, the production rate of hydrocarbons decreased from 0.44 × 10−3 to 0.15 × 10−3 mol/min by increasing volume of feedstock from 1 to 5 cc.


Cracking Pyrolysis fuel oil Dielectric barrier discharge Fossil fuel transformation Non-thermal plasma 


  1. 1.
    Balat M (2007) Status of fossil energy resources: a global perspective. Energy Sources Part B 2(1):31–47CrossRefGoogle Scholar
  2. 2.
    Taghvaei H, Kheirollahivash M, Ghasemi M, Rostami P, Gates BC, Rahimpour MR (2014) Upgrading of anisole in a dielectric barrier discharge plasma reactor. Energy Fuels 28(7):4545–4553CrossRefGoogle Scholar
  3. 3.
    Hao H, Wu BS, Yang J, Guo Q, Yang Y, Li YW (2015) Non-thermal plasma enhanced heavy oil upgrading. Fuel 149:162–173CrossRefGoogle Scholar
  4. 4.
    Xing Y, Liu Z, Couttenye RA, Willis WS, Suib SL, Fanson PT, Hirata H, Ibe M (2007) Generation of hydrogen and light hydrocarbons for automotive exhaust gas purification: conversion of n-hexane in a PACT (plasma and catalysis integrated technologies) reactor. J Catal 250(1):67–74CrossRefGoogle Scholar
  5. 5.
    Jahanmiri A, Rahimpour M, Shirazi MM, Hooshmand N, Taghvaei H (2012) Naphtha cracking through a pulsed DBD plasma reactor: effect of applied voltage, pulse repetition frequency and electrode material. Chem Eng J 191:416–425CrossRefGoogle Scholar
  6. 6.
    Braithwaite NSJ (2000) Introduction to gas discharges. Plasma Sources Sci Technol 9(4):517CrossRefGoogle Scholar
  7. 7.
    Hooshmand N, Rahimpour MR, Jahanmiri A, Taghvaei H, Mohamadzadeh Shirazi M (2013) Hexadecane cracking in a hybrid catalytic pulsed dielectric barrier discharge plasma reactor. Ind Eng Chem Res 52(12):4443–4449CrossRefGoogle Scholar
  8. 8.
    Gauvin WH, Kubanek GR (1985) Transferred-arc plasma reactor for chemical and metallurgical applications. Google PatentsGoogle Scholar
  9. 9.
    Kamei O, Onoe K, Marushima W, Yamaguchi T (1998) Brown coal conversion by microwave plasma reactions under successive supply of methane. Fuel 77(13):1503–1506CrossRefGoogle Scholar
  10. 10.
    Prieto G, Okumoto M, Shimano K, Takashima K, Katsura S, Mizuno A (2001) Reforming of heavy oil using nonthermal plasma. IEEE Trans Ind Appl 37(5):1464–1467CrossRefGoogle Scholar
  11. 11.
    Kong PC, Nelson LO, Detering BA (2005) Nonthermal plasma systems and methods for natural gas and heavy hydrocarbon co-conversion. US Patents US20030141182 A1Google Scholar
  12. 12.
    Zhang X, Cha MS (2015) The reformation of liquid hydrocarbons in an aqueous discharge reactor. J Phys D Appl Phys 48(21):215201CrossRefGoogle Scholar
  13. 13.
    Khani MR, Khosravi A, Gharibi M, Shahabi SS, Guy ED, Shokri B (2015) Conversion of pyrolysis fuel oils by a dielectric barrier discharge reactor in the presence of methane and ethane. Chem Eng Technol 38(8):1452–1459CrossRefGoogle Scholar
  14. 14.
    Gharibi M, Khosravi A, Khani MR, Shahabi SS, Guy ED, Shokri B (2015) Dielectric barrier discharge plasma torch treatment of pyrolysis fuel oil in presence of methane and ethane. J Electrostat 76:178–187CrossRefGoogle Scholar
  15. 15.
    Prieto G, Okumoto M, Shimano K, Takashima K, Katsura S, Mizuno A, Prieto O, Gay CR (1999) Heavy oil conversion by plasma chemical reactors. In: Industry applications conference. Thirty-Fourth IAS annual meeting. Conference record of the 1999 IEEE. IEEE, pp 1144–1149Google Scholar
  16. 16.
    Khani MR, Barzoki SHR, Yaghmaee MS, Hosseini SI, Shariat M, Shokri B, Fakhari AR, Nojavan S, Tabani H, Ghaedian M (2011) Investigation of cracking by cylindrical dielectric barrier discharge reactor on the n-hexadecane as a model compound. IEEE Trans Plasma Sci 39(9):1807–1813CrossRefGoogle Scholar
  17. 17.
    Dey G, Singh B, Kumar SD, Das T (2007) Dielectric barrier discharge initiated gas-phase decomposition of CO2 to CO and C6–C9 alkanes to C1–C3 hydrocarbons on glass, molecular sieve 10X and TiO2/ZnO surfaces. Plasma Chem Plasma Process 27(6):669–678CrossRefGoogle Scholar
  18. 18.
    Kostov K, Honda RY, Alves L, Kayama M (2009) Characteristics of dielectric barrier discharge reactor for material treatment. Braz J Phys 39(2):322–325CrossRefGoogle Scholar
  19. 19.
    Vincent A, Daou F, Robert S, Francke E, Cavadias S, Amouroux J (2001) Electrical characterization of DBD wire-cylinder reactor: influence of operating parameters and by-products analysis. In: Proceedings of 15th international symposium on plasma chemistry. pp 3141–3147Google Scholar
  20. 20.
    Fridman A (2008) Plasma chemistry. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  21. 21.
    Kong PC, Nelson LO, Detering BA (2009) Methods for natural gas and heavy hydrocarbon co-conversion. Bechtel BWXT Idaho, LLC, Idaho National Laboratory (INL), Idaho Falls, IDGoogle Scholar
  22. 22.
    Khani M, Dejban Guy E, Gharibi M, Shahabi S, Khosravi A, Norouzi A, Shokri B (2014) The effects of microwave plasma torch on the cracking of pyrolysis fuel oil feedstock. Chem Eng J 237:169–175CrossRefGoogle Scholar
  23. 23.
    Rusanov VD, Babaritskii AI, Baranov IE, Bibikov MB, Deminskii MA, Demkin SA, Zhivotov VK, Konovalov GM, Lysov GV, Moskovskii AS, Potapkin BV, Smirnov RV, Cheban’kov FN (2004) Nonequilibrium effect of atmospheric-pressure microwave-discharge plasma on methane and kerosene conversion into synthesis gas. Dokl Chem 395(4–6):82–85CrossRefGoogle Scholar
  24. 24.
    Tippayawong N, Inthasan P (2010) Investigation of light tar cracking in a gliding arc plasma system. Int J Chem React Eng 8(1):2181–2197Google Scholar
  25. 25.
    Grandy JD, Kong PC, Detering BA, Zuck LD (2007) Plasma processing of hydrocarbon. Idaho National Laboratory (INL)Google Scholar
  26. 26.
    Petitpas G, Rollier JD, Darmon A, Gonzalez-Aguilar J, Metkemeijer R, Fulcheri L (2007) A comparative study of non-thermal plasma assisted reforming technologies. Int J Hydrog Energy 32(14):2848–2867CrossRefGoogle Scholar
  27. 27.
    Ahmed S, Aitani A, Rahman F, Al-Dawood A, Al-Muhaish F (2009) Decomposition of hydrocarbons to hydrogen and carbon. Appl Catal A 359(1):1–24CrossRefGoogle Scholar
  28. 28.
    Sarmiento B, Brey JJ, Viera IG, González-Elipe AR, Cotrino J, Rico VJ (2007) Hydrogen production by reforming of hydrocarbons and alcohols in a dielectric barrier discharge. J Power Sources 169(1):140–143CrossRefGoogle Scholar
  29. 29.
    Xing Y, Liu Z, Couttenye RA, Willis WS, Suib SL, Fanson PT, Hirata H, Ibe M (2008) Processing of hydrocarbons in an AC discharge nonthermal plasma reactor: an approach to generate reducing agents for on-board automotive exhaust gas cleaning. J Catal 253(1):28–36CrossRefGoogle Scholar
  30. 30.
    Renneke RM, Rosocha LA, Kim Y (2008) Temperature effects on gaseous fuel cracking studies using a dielectric barrier discharge. IEEE Trans Plasma Sci 36(6):2905–2908CrossRefGoogle Scholar
  31. 31.
    Slovetskii D (2006) Plasma-chemical processes in petroleum chemistry (review). Pet Chem 46(5):295–304CrossRefGoogle Scholar
  32. 32.
    Chen HL, Lee HM, Chen SH, Chao Y, Chang MB (2008) Review of plasma catalysis on hydrocarbon reforming for hydrogen production—interaction, integration, and prospects. Appl Catal B 85(1):1–9Google Scholar
  33. 33.
    Wang Q, Yan B-H, Jin Y, Cheng Y (2009) Investigation of dry reforming of methane in a dielectric barrier discharge reactor. Plasma Chem Plasma Process 29(3):217–228CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Atieh Khosravi
    • 1
  • Mohammad Reza Khani
    • 1
  • Elham Dejban Goy
    • 1
  • Babak Shokri
    • 1
  1. 1.Laser and Plasma Research Institute and Department of PhysicsShahid Beheshti University, G.C.Evin, TehranIslamic Republic of Iran

Personalised recommendations