Advertisement

Plasma Chemistry and Plasma Processing

, Volume 38, Issue 2, pp 355–364 | Cite as

Influence of Duty Cycle on Ozone Generation and Discharge Using Volume Dielectric Barrier Discharge

  • L. S. Wei
  • B. Pongrac
  • Y. F. Zhang
  • X. Liang
  • V. Prukner
  • M. Šimek
Original Paper

Abstract

The influence of duty cycle on ozone generation and discharge characteristics was investigated experimentally using volume dielectric barrier discharge in both synthetic air and pure oxygen at atmospheric pressure. The discharge was driven by an amplitude-modulated AC high voltage–power supply producing TON (a single AC cycle) and TOFF periods with a widely variable duty cycle. The experimental results show that the energy delivered to the discharge during each AC cycle remains roughly constant and is independent of feed gas, duty cycle and TOFF. Both average discharge power and ozone concentration show an initial linear increase with duty cycle, and deviate gradually from linearity owing to an increase in gas temperature at higher duty cycles. Nevertheless, ozone yield remains nearly constant (45.7 ± 3.5 g/kWh in synthetic air and 94.7 ± 3.1 g/kWh in pure oxygen) over a wide range of applied duty cycles (0.02–1). This property can be conveniently employed to develop a unique ozone generator with a widely adjustable ozone concentration and simultaneously a constant ozone yield. Additionally, the discharges in synthetic air and pure oxygen have similar electrical characteristics; however, there are observable differences in apparent luminosity, which is weak and white-toned for synthetic air discharge, and bright and blue-toned for pure oxygen discharge.

Keywords

Ozone generation Volume dielectric barrier discharge Electrical characteristics Duty cycle Adjustable ozone concentration 

Notes

Acknowledgements

This work was supported by the Czech Science Foundation (GA15-04023S), National Natural Science Foundation of China (51711530316, 51611530548) and the Science and Technology Pillar Program of Jiangxi Province, China (20151BBG70007). L. S. Wei would like to thank the NSFC-CAS agreement for funding his stay at IPP Prague.

References

  1. 1.
    Hakiai K, Ihara S, Satoh S, Yamabe C (1999) Electr Eng Jpn 127(2):8–13CrossRefGoogle Scholar
  2. 2.
    Samaranayake WJW, Miyahara Y, Namihira T, Katsuki S, Sakugawa T, Hackam R, Akiyama H (2000) IEEE Trans Dielectr Electr Insul 7(2):254–260CrossRefGoogle Scholar
  3. 3.
    Samaranayake WJW, Miyahara Y, Namihira T, Katsuki S, Hackam R, Akiyama H (2000) IEEE Trans Dielectr Electr Insul 7(6):849–854CrossRefGoogle Scholar
  4. 4.
    Simek M, Clupek M (2002) J Phys D Appl Phys 35(11):1171–1175CrossRefGoogle Scholar
  5. 5.
    Ma HB, Qiu YC (2003) Ozone Sci Eng 25:127–135CrossRefGoogle Scholar
  6. 6.
    Ahn HS, Hayashi N, Ihara S, Yamabe C (2003) Jpn J Appl Phys 42:6578–6583CrossRefGoogle Scholar
  7. 7.
    Kaneda S, Hayashi N, Ihara S (2004) Vacuum 73:567–571CrossRefGoogle Scholar
  8. 8.
    Song HJ, Chun BJ, Lee KS (2004) J Korean Phys Soc 44(5):1182–1188Google Scholar
  9. 9.
    Ono R, Oda T (2007) J Appl Phys Appl Phys 40:176–182CrossRefGoogle Scholar
  10. 10.
    Fukawa F, Shimomura N, Yano T, Yamanaka S, Teranishi K, Akiyama H (2008) IEEE Trans Plasma Sci 36(5):2592–2597CrossRefGoogle Scholar
  11. 11.
    Wang DY, Matsumoto T, Namihira T, Akiyama H (2010) J Adv Oxid Technol 13(1):71–78Google Scholar
  12. 12.
    Simek M, Pekarek S, Prukner V (2010) Plasma Chem Plasma Process 30:607–617CrossRefGoogle Scholar
  13. 13.
    Simek M, Pekarek S, Prukner V (2012) Plasma Chem Plasma Process 32:743–754CrossRefGoogle Scholar
  14. 14.
    Sung TL, Teii S, Liu CM, Hsiao RC, Chen PC, Wu YH, Yang CK, Teii K, Ono S, Ebihara K (2013) Vacuum 90:65–69CrossRefGoogle Scholar
  15. 15.
    Malik MA, Hughes D (2016) J Phys D Appl Phys 49(13):135202CrossRefGoogle Scholar
  16. 16.
    Simek M, Ambrico PF, Prukner V (2013) J Phys D Appl Phys 46:485205CrossRefGoogle Scholar
  17. 17.
    Simek M, Ambrico PF, Prukner V (2015) J Phys D Appl Phys 48:265202CrossRefGoogle Scholar
  18. 18.
    Wagner HE, Brandenburg R, Kozlov KV, Sonnenfeld A, Michel P, Behnke JF (2003) Vacuum 71:417–436CrossRefGoogle Scholar
  19. 19.
    Simek M (2002) J Phys D Appl Phys 35(16):1967–1980CrossRefGoogle Scholar
  20. 20.
    Simek M (2014) J Phys D Appl Phys 47(46):463001CrossRefGoogle Scholar
  21. 21.
    Wei LS, Xu M, Zhang YF (2017) Ozone Sci Eng 39(1):33–43CrossRefGoogle Scholar
  22. 22.
    Benyamina M, Belasri A, Khodja K (2014) Ozone Sci Eng 36(3):253–263CrossRefGoogle Scholar
  23. 23.
    Yehia A (2012) Phys Plasmas 19(2):023503CrossRefGoogle Scholar
  24. 24.
    Lee HM, Chang MB, Wei TC (2004) Ozone Sci Eng 26(6):551–562CrossRefGoogle Scholar
  25. 25.
    Mennad B, Harrache Z, Aid DA, Belasri A (2010) Curr Appl Phys 10(6):1391–1401CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • L. S. Wei
    • 1
  • B. Pongrac
    • 2
  • Y. F. Zhang
    • 1
  • X. Liang
    • 1
  • V. Prukner
    • 2
  • M. Šimek
    • 2
  1. 1.School of Resources, Environmental and Chemical EngineeringNanchang UniversityNanchangChina
  2. 2.Department of Pulse Plasma Systems, Institute of Plasma PhysicsAcademy of Sciences of the Czech RepublicPragueCzech Republic

Personalised recommendations