Advertisement

Plasma Chemistry and Plasma Processing

, Volume 38, Issue 2, pp 429–441 | Cite as

Thermal Conductivity of Nanocomposites Based in High Density Polyethylene and Surface Modified Hexagonal Boron Nitride via Cold Ethylene Plasma

  • José J. Borjas-Ramos
  • Luis F. Ramos-de-Valle
  • María G. Neira-Velázquez
  • Ernesto Hernández-Hernández
  • Esmeralda M. Saucedo-Salazar
  • Gustavo Soria-Argüello
Original Paper

Abstract

Hexagonal boron nitride nanoparticles (hBN) were surface modified by treatment with cold ethylene plasma. During this treatment, an ultrathin plasma polymerized polyethylene layer is deposited on the surface of the hBN nanoparticles. Before and after the plasma treatment, the nanoparticles were characterized by infra-red spectroscopy, thermogravimetric analysis, transmission electron microscopy (TEM) and X-ray diffraction. Untreated and plasma treated nanoparticles were incorporated via melt mixing into high density polyethylene (HDPE), at different concentrations. Dispersion of hBN within the polymer and the polymer-particle interaction were studied by TEM. Thermal conductivity of the prepared nanocomposites was determined by modulated differential scanning calorimetry. In general, the thermal conductivity of all HDPE–hBN prepared nanocomposites was higher than that of pure HDPE. However, the higher conductivity values, 97 and 114% higher than that of pure HDPE, were obtained in plasma treated samples (treated at 100 W for 5 min) with 8 and 15 wt% loading of hBN.

Keywords

Hexagonal boron nitride Thermal conductivity Plasma treatment Plasma polyethylene layer 

Notes

Acknowledgements

One of the authors (Javier Borjas) thanks National Council for Science and Technology (Consejo Nacional de Ciencia y Tecnología-CONACyT) for granting him a scholarship to carry his PhD studies. Also, the authors gratefully acknowledge the financial support of CONACyT through Projects CB-222805 and LN-232753. The support of CONACyT through Grant 280425 (LANI-Auto) is also greatly appreciated. The authors also wish to thank Anabel Ochoa, Blanca Huerta, Elda Hurtado, Guadalupe Méndez, Irma Solís, Miriam Lozano, Rosario Rangel, Seyma De León, Angel Cepeda, Alejandro Espinosa, Daniel Alvarado, Enrique Reyes, Francisco Zendejo, Jesús Rodríguez, Marcelo Ulloa and Rodrigo Cedillo for their technical and informatics support.

References

  1. 1.
    Hu M, Yu D, Wei J (2007) Polym Test 26(3):333–337CrossRefGoogle Scholar
  2. 2.
    Speight JG (2005) Lange’s handbook of chemistry, 16th edn. McGraw-Hill, New YorkGoogle Scholar
  3. 3.
    Zhang X, Shen L, Wu H, Guo S (2013) Compos Sci Technol 89:24–28CrossRefGoogle Scholar
  4. 4.
    Zhou W, Qi S, An Q, Zhao H, Liu N (2007) Mater Res Bull 42(10):1863–1873CrossRefGoogle Scholar
  5. 5.
    Lin Z, Liu Y, Raghavan S, Moon K, Sitaraman SK, Wong C (2013) Appl Mater Interfaces 5(13):7633–7640CrossRefGoogle Scholar
  6. 6.
    Ma X, Lee NH, Oh HJ, Jung SC, Lee WJ, Kim SJ (2011) J Cryst Growth 316(1):185–190CrossRefGoogle Scholar
  7. 7.
    Zheng JC, Zhang L, Kretinin AV, Morozov SV, Wang YB, Wang T, Li X, Ren F, Zhang J, Lu CY, Chen JC, Lu M, Wang HQ, Geim AK, Novoselov KS (2016) 2D Mater 3(1):011004CrossRefGoogle Scholar
  8. 8.
    Wu J, Wang B, Wei Y, Yang R, Dresselhaus M (2013) Mater Res Lett 1(4):200–206CrossRefGoogle Scholar
  9. 9.
    Fu SY, Feng XQ, Lauke B, Mai YW (2008) Compos B Eng 39(6):933–961CrossRefGoogle Scholar
  10. 10.
    Harrison C, Weaver S, Bertelsen C, Burgett E, Hertel N, Grulke E (2008) J Appl Polym Sci 109(4):2529–2538CrossRefGoogle Scholar
  11. 11.
    Hod O (2012) J Chem Theory Comput 8(4):1360–1369CrossRefGoogle Scholar
  12. 12.
    Sentmanat M, Hatzikiriakos SG (2004) Rheol Acta 43(6):624–633CrossRefGoogle Scholar
  13. 13.
    González J, Albano C, Ichazo M, Díaz B (2002) Eur Polym J 38(12):2465–2475CrossRefGoogle Scholar
  14. 14.
    Barman A, Shrivastava NK, Khatua BB, Ray BC (2015) Polym Compos 36(12):2157–2166CrossRefGoogle Scholar
  15. 15.
    George TS, Krishnan A, Joseph N, Anjana R, George KE (2012) Polym Compos 33(9):1465–1472CrossRefGoogle Scholar
  16. 16.
    Neira MG, Borjas JJ, Hernández E, Hernández CG, Narro RI, Hernández JF, Ramos LF (2015) Plasma Process Polym 12(5):477–485CrossRefGoogle Scholar
  17. 17.
    Neira MG, Ramos LF, Hernández E, Ponce A, Solís SG, Sánchez S, Bartolo P, González VA (2011) Plasma Process Polym 8(9):842–849CrossRefGoogle Scholar
  18. 18.
    Pakdel A, Bando Y, Golberg D (2014) ACS Nano 8(10):10631–10639CrossRefGoogle Scholar
  19. 19.
    Sevak Singh R, Tay RY, Chow WL, Tsang SH, Mallick G, Teo EHT (2014) Appl Phys Lett 104(16):163101CrossRefGoogle Scholar
  20. 20.
    Ikuno T, Sainsbury T, Okawa D, Fréchet JMJ, Zettl A (2007) Solid State Commun 142(11):643–646CrossRefGoogle Scholar
  21. 21.
    ASTM E1952 (2011) Standard test method for thermal conductivity and thermal diffusivity by modulated temperature differential scanning calorimetry. ASTMGoogle Scholar
  22. 22.
    Russo C, Stanzione F, Tregrossi A, Ciajolo A (2014) Carbon 74:127–138CrossRefGoogle Scholar
  23. 23.
    Baraton MI, Merle T, Quintard P, Lorenzelli V (1993) Langmuir 9(6):1486–1491CrossRefGoogle Scholar
  24. 24.
    Yasuda H, Yasuda T (2000) J Polym Sci A Polym Chem 38(6):943–953CrossRefGoogle Scholar
  25. 25.
    Cho H-B, Tokoi Y, Tanaka S, Suematsu H, Suzuki T, Jiang W, Niihara K, Nakayama T (2011) Compos Sci Technol 71(8):1046–1052CrossRefGoogle Scholar
  26. 26.
    Shi Y, Hamsen C, Jia X, Kim KK, Reina A, Hofmann M, Hsu AL, Zhang K, Li H, Juang ZY, Dresselhaus MS, Li LJ, Kong J (2010) Nano Lett 10(10):4134–4139CrossRefGoogle Scholar
  27. 27.
    Lin Z, Mcnamara A, Liu Y, Moon KS, Wong CP (2014) Compos Sci Tech 90:123–128CrossRefGoogle Scholar
  28. 28.
    Briggs D, Fairley (2002) Surf Interface Anal 33(3):283–290Google Scholar
  29. 29.
    Briggs D, Beamson G (1992) Anal Chem 64(15):1729–1736CrossRefGoogle Scholar
  30. 30.
    Dementjev AP, Graaf A, Sanden MCM, Maslakov KI, Naumkin AV, Serov AA (2000) Diam Relat Mater 9(11):1904–1907CrossRefGoogle Scholar
  31. 31.
    Bhattacharyya S, Cardinaud C, Turban G (1998) J Appl Phys 83(8):4491–4500CrossRefGoogle Scholar
  32. 32.
    Bhattacharyya S, Hong J, Turban G (1998) J Appl Phys 83(8):3917–3919CrossRefGoogle Scholar
  33. 33.
    Yuan C, Duan B, Li L, Xie B, Huang M, Luo X (2015) ACS Appl Mater Interfaces 7(23):13000–13006CrossRefGoogle Scholar
  34. 34.
    Sichel EK, Miller RE, Abrahams MS, Buiocchi CJ (1976) Phys Rev B 13(10):4607–4611CrossRefGoogle Scholar
  35. 35.
    Simpson A, Stuckes AD (1971) J Phys C: Solid State Phys 4(13):1710–1718CrossRefGoogle Scholar
  36. 36.
    Ashton TS, Moore AL (2015) J Mater Sci 50(18):6220–6226CrossRefGoogle Scholar
  37. 37.
    Lin Z, Mcnamara A, Liu Y, Moon K, Wong CP (2014) Compos Sci Technol 90:123–128CrossRefGoogle Scholar
  38. 38.
    Tsekmes IA, Kochetov R, Morshuis PHF, Smit JJ (2013). In: IEEE international conference on solid dielectrics, pp~678–681Google Scholar
  39. 39.
    Luo T, Lloyd JR (2012) Adv Funct Mater 22(12):2495–2502CrossRefGoogle Scholar
  40. 40.
    Agarwal S, Khan MMK, Gupta RK (2008) Polym Eng Sci 28(12):2474–2481CrossRefGoogle Scholar
  41. 41.
    Zhou W, Qi S, An Q, Zhao H, Liu N (2007) Mater Res Bull 42(10):1863–1873CrossRefGoogle Scholar
  42. 42.
    Cheewawuttipong W, Fuoka D, Tanoue S, Uematsu H, Iemoto Y (2013) Energy Proc 34:808–817CrossRefGoogle Scholar
  43. 43.
    Covarrubias-Gordillo CA, Soriano-Corral F, Ávila-Orta CA, Cruz-Delgado VJ, Neira-Velázquez MG, Hernández-Hernández E, Hernández-Gámez JF, De León-Martínez PA (2017) J Nanomater 2017:1–10CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • José J. Borjas-Ramos
    • 1
  • Luis F. Ramos-de-Valle
    • 1
  • María G. Neira-Velázquez
    • 1
  • Ernesto Hernández-Hernández
    • 1
  • Esmeralda M. Saucedo-Salazar
    • 1
  • Gustavo Soria-Argüello
    • 1
  1. 1.Centro de Investigación en Química AplicadaSaltilloMexico

Personalised recommendations