Skip to main content

Advertisement

Log in

The Radial Distribution of Ions and Electrons in RF Inductively Coupled H2/T2B Plasmas

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

A glow discharge polymer (GDP) was fabricated using trans-2-butene (T2B) and hydrogen (H2) via a plasma-enhanced chemical vapor deposition (PECVD) system. The uniformity of the GDP films was significantly affected by the radial distribution of the H2/T2B plasma parameters. The plasma properties while discharging by a multi-carbon gas source of mixed H2/T2B were investigated during the GDP deposition process. The main positive ions and ion energy distributions in inductively coupled H2/T2B plasmas were analyzed by energy-resolved mass spectrometer (MS), and the electron density and the effective electron temperature were mainly analyzed using a Langmuir probe. The MS results show that the main positive ions in the plasmas are \({\text{C}}_{ 2} {\text{H}}_{ 4}^{ + }\), \({\text{C}}_{ 2} {\text{H}}_{ 6}^{ + }\), \({\text{C}}_{ 3} {\text{H}}_{ 3}^{ + }\), \({\text{C}}_{ 3} {\text{H}}_{ 6}^{ + }\), \({\text{C}}_{ 3} {\text{H}}_{ 8}^{ + }\), \({\text{C}}_{ 4} {\text{H}}_{ 5}^{ + }\), \({\text{C}}_{ 4} {\text{H}}_{ 1 0}^{ + }\), \({\text{C}}_{ 5} {\text{H}}_{ 5}^{ + }\), and \({\text{C}}_{ 5} {\text{H}}_{ 7}^{ + }\) with mass-to-charge ratios (m/e) of 28, 30, 39, 42, 44, 53, 58, 65, and 67, respectively. For a normalized ion intensity, the relative intensities of saturated CH ions increase with increasing radial distance, while the unsaturated CH ions decrease with increasing radial distance. The ion energy distribution of \({\text{C}}_{ 2} {\text{H}}_{ 6}^{ + }\) (m/e = 30) presents a bimodal structure. Additionally, both the electron density and the effective electron temperature decrease with increasing radial distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Plisson T, Colinlalu P, Huser G, Loubeyre P (2016) J Appl Phys 120:085903

    Article  Google Scholar 

  2. Reynolds H, Baxamusa S, Haan SW, Fitzsimmons P, Carlson L, Farrell M, Nikroo A, Watson BJ (2016) J Appl Phys 119:085305

    Article  Google Scholar 

  3. Yan JC, He ZB, Wei JJ, Zhang Y, Zhang L, Tang YJ (2011) Diam Relat Mater 20:1042–1045

    Article  CAS  Google Scholar 

  4. Theobald M, Baclet P, Legaie O, Durand J (2001) J Vaccum Sci Technol A 19:118–123

    Article  CAS  Google Scholar 

  5. He ZB, Yang ZL, Yan JC, Song ZM, Lu TC (2011) Acta Phys Sin 60:538

    Google Scholar 

  6. Robertson J (2002) Mater Sci Eng R 37:129–281

    Article  Google Scholar 

  7. Ishpal, Kumar S, Dwivedi N, Rauthan CMS (2012) Phys Plasmas 19:033515

    Article  Google Scholar 

  8. Vizireanu S, Stoica SD, Luculescu C, Nistor LC, Mitu B, Dinescu G (2010) Plasma Sources Sci Technol 19:034016

    Article  Google Scholar 

  9. Frischmuth T, Schneider M, Maurer D, Grille T, Schmid U (2016) Sens Actuators A Phys 247:647–655

    Article  CAS  Google Scholar 

  10. Wei DY, Xiao SQ, Huang SY, Chan CS, Zhou HP, Xu LX, Guo YN, Chai JW, Wang SJ, Xu S (2013) J Phys D Appl Phys 46:215501

    Article  Google Scholar 

  11. Setareh M, Farnia M, Maghari A, Bogaerts A (2014) J Phys D Appl Phys 47:355205

    Article  Google Scholar 

  12. Mattei S, Nishida K, Mochizuki S, Grudiev A, Lettry J, Tran MQ, Hatayama A (2016) Plasma Sources Sci Technol 25:065001

    Article  Google Scholar 

  13. Yoo SW, You SJ, Kim JH, Seong DJ, Seo BH, Hwang NM (2017) J Phys D Appl Phys 50:035201

    Article  Google Scholar 

  14. Lee HC, Chung CW (2012) Phys Plasmas 19:033514

    Article  Google Scholar 

  15. Zhou LF, Chen J, Ma JH, Li Y (2015) Vacuum 119:209–213

    Article  CAS  Google Scholar 

  16. Wegner T, Küllig C, Meichsner J (2016) Phys Plasmas 23:023503

    Article  Google Scholar 

  17. Zhao SX, Gao F, Wang YN, Bogaerts A (2012) Plasma Sources Sci Technol 21:1257–1261

    Article  Google Scholar 

  18. Li R, He ZB, He XS, Niu ZC, Yang XD (2012) Acta Phys Sin 61:215203

    Google Scholar 

  19. Li R, He ZB, Yang XD, He XS, Niu ZC, Jia XQ (2013) Acta Phys Sin 62:058104

    Google Scholar 

  20. Zhang L, He XS, Chen G, Wang T, Tang YJ, He ZB (2016) Appl Surf Sci 366:499–505

    Article  CAS  Google Scholar 

  21. Chen G, Zhang L, He XS, He ZB, Tang YJ (2016) At Eng Sci Technol 50:1658

    Google Scholar 

  22. Li RQ (2005) Spectral analysis of organic structure. Tianjin University Press, Tianjin, pp 301–357

    Google Scholar 

  23. Hudson CE, Wang D, McAdoo DJ (2004) Int J Mass Spectrom 236:105–116

    Article  CAS  Google Scholar 

  24. Kiefer JH, Gupte KS, Harding LB, Klippenstein SJ (2009) J Phys Chem A 113:13570–13583

    Article  CAS  Google Scholar 

  25. Hittle LR, Hercules DM (1994) Surf Interface Anal 21:217–225

    Article  CAS  Google Scholar 

  26. Zhang YJ, Cai JH, Zhao L, Yang JZ, Jin HF, Cheng ZJ, Li YY, Zhang LD, Qi F (2012) Combust Flame 159:905–917

    Article  CAS  Google Scholar 

  27. Bauer M, Schwarz-Selinger T, Jacob W, Von Keudell A (2005) J Appl Phys 98:073302

    Article  Google Scholar 

  28. Denysenko IB, Xu S, Long JD, Rutkevych PP, Azarenkov NA, Ostrikov K (2004) J Appl Phys 95:2713–2724

    Article  CAS  Google Scholar 

  29. Li K, Gabriel O, Meichsner J (2004) J Phys D Appl Phys 37:588–594

    Article  CAS  Google Scholar 

  30. Kawamura E, Vahedi V, Lieberman MA, Birdsall CK (1998) Plasma Sources Sci Technol 8:45–64

    Article  Google Scholar 

  31. Zhang YT, Kushner MJ, Moore N, Pribyl P (2013) J Vaccum Sci Technol A 31:061311–061317

    Article  Google Scholar 

  32. Martin IT, Zhou J, Fisher ER (2006) J Appl Phys 100:013301

    Article  Google Scholar 

  33. Olevanov M, Proshina O, Rakhimova T, Voloshin D (2008) Phys Rev E 8:026404

    Article  Google Scholar 

  34. Druyvesteyn MJ, Penning FM (1940) Rev Mod Phys 12:87–174

    Article  CAS  Google Scholar 

  35. Mao M, Dai ZL, Wang YN (2007) Plasma Sci Technol 9:30–34

    Article  Google Scholar 

  36. Lee HC, Chung CW (2013) Phys Plasma 20:101607

    Article  Google Scholar 

  37. Wegner T, Küllig C, Meichsner J (2017) Plasma Sources Sci Technol 26:025007

    Article  Google Scholar 

  38. Gao F, Mao M, Ding ZF, Wang YN (2008) Acta Phys Sin 57:5123

    Google Scholar 

  39. Todorov D, Shivarova A, Paunska T, Tarnev K (2015) Phys Plasma 22:033504

    Article  Google Scholar 

  40. Kolobov VI, Economou DJ (1997) Plasma Sources Sci Technol 6:R1–R17

    Article  CAS  Google Scholar 

  41. Lee HC, Lee MH, Chung CW (2010) Appl Phys Lett 96:041503

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Foundation of China (Grant Number 11504350). The authors are grateful to Yan-Song Liu, Jing-Lin Huang and Cui-Lan Tang who offered the suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ai, X., Chen, G., Zhang, L. et al. The Radial Distribution of Ions and Electrons in RF Inductively Coupled H2/T2B Plasmas. Plasma Chem Plasma Process 38, 281–292 (2018). https://doi.org/10.1007/s11090-017-9858-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-017-9858-y

Keywords

Navigation