Skip to main content
Log in

Rapid Formation of Diamond-Like Nano-Carbons in a Gas Bubble Discharge in Liquid Ethanol

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

This work demonstrates that diamond-like nano-carbons can be rapidly grown at atmospheric pressure and near ambient temperature in Ar gas bubble discharge in liquid ethanol. The method uses a discharge between point-to-plate electrodes immersed in ethanol, with plasma being generated inside Ar gas bubbles introduced through the needle electrode. The ethanol was dissociated at the liquid/gas interface into reactive species such as C2 and CH, which are the primary species responsible for diamond formation. A mixture of lonsdaleite nano-diamonds, amorphous carbon nano-spheres, and a graphitic carbon network, was formed. The rapid bubble movement distributes the reaction products almost immediately into the liquid phase, ensuring that nucleation of new material continues throughout the process. This simple, inexpensive and fast process avoids the elevated temperatures and extreme pressures of current methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mochalin VN, Shenderova O, Ho D, Gogotsi Y (2012) The properties and applications of nanodiamonds. Nat Nanotechnol 7:11–23

    Article  CAS  Google Scholar 

  2. Williams OA, Nesladek M, Daenen M, Michaelson S, Hoffman A, Osawa E, Haenen K, Jackman RB (2008) Growth, electronic properties and applications of nanodiamond. Diam Relat Mater 17:1080–1088

    Article  CAS  Google Scholar 

  3. Schrand AM, Hens SAC, Shenderova OA (2009) Nanodiamond particles: properties and perspectives for bioapplications. Crit Rev Solid State Mater Sci 34:18–74

    Article  CAS  Google Scholar 

  4. Zhao F, Vrajitoarea A, Jiang Q, Han X, Chaudhary A, Welch JO, Jackman RB (2015) Graphene nanodiamond heterostructures and their application to high current devices. Sci Rep 5:13771

    Article  Google Scholar 

  5. Hsu T-C, Liu K-K, Chang H-C, Hwang E, Chao J-I (2014) Labeling of neuronal differentiation and neuron cells with biocompatible fluorescent nanodiamonds. Sci Rep 4:5004

    Article  CAS  Google Scholar 

  6. Ho D, Wang C-HK, Chow EK-H (2015) Nanodiamonds: the intersection of nanotechnology, drug development, and personalized medicine. Sci Adv 1(7):e1500439

    Article  Google Scholar 

  7. Wang J, Hu Z, Xu J, Zhao Y (2014) Therapeutic applications of low-toxicity spherical nanocarbon materials. NPG Asia Mater 6:e84

    Article  CAS  Google Scholar 

  8. Portet C, Yushin G, Gogotsi Y (2007) Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors. Carbon 45:2511–2518

    Article  CAS  Google Scholar 

  9. Krueger A (2010) Carbon materials and nanotechnology. Wiley, New York

    Book  Google Scholar 

  10. Williams OA (2014) Nanodiamond. The Royal Society of Chemistry, London

    Book  Google Scholar 

  11. Gorrini F, Cazzanelli M, Bazzanella N, Edla R, Gemmi M, Cappello V, David J, Dorigoni C, Bifone A, Miotello A (2016) On the thermodynamic path enabling a room-temperature, laser-assisted graphite to nanodiamond transformation. Sci Rep 6:35244

    Article  CAS  Google Scholar 

  12. Kraus D, Ravasio A, Gauthier M, Gericke DO, Vorberger J, Frydrych S, Helfrich J, Fletcher LB, Schaumann G, Nagler B, Barbrel B, Bachmann B, Gamboa EJ, Göde S, Granados E, Gregori G, Lee HJ, Neumayer P, Schumaker W, Döppner T, Falcone RW, Glenzer SH, Roth M (2016) Nanosecond formation of diamond and lonsdaleite by shock compression of graphite. Nat Commun 7:10970

    Article  CAS  Google Scholar 

  13. Zaiser M, Banhart F (1997) Radiation-induced transformation of graphite to diamond. Phys Rev Lett 79:3680–3683

    Article  CAS  Google Scholar 

  14. Banhart F, Ajayan PM (1996) Carbon onions as nanoscopic pressure cells for diamond formation. Nature 382:433–435

    Article  CAS  Google Scholar 

  15. Nee C-H, Yap S-L, Tou T-Y, Chang H-C, Yap S-S (2016) Direct synthesis of nanodiamonds by femtosecond laser irradiation of ethanol. Sci Rep 6:33966

    Article  CAS  Google Scholar 

  16. Kumar A, Lin PA, Xue A, Hao B, Yap YK, Sankaran RM (2013) Formation of nanodiamonds at near-ambient conditions via microplasma dissociation of ethanol vapour. Nat Commun 4:2618

    Google Scholar 

  17. Hsin YL, Hwang KC, Chen F-R, Kai J-J (2001) Production and in situ metal filling of carbon nanotubes in water. Adv Mater 13:830–833

    Article  CAS  Google Scholar 

  18. Alexandrou I, Wang H, Sano N, Amaratunga GA (2001) Structure of carbon onions and nanotubes formed by arc in liquids. J Chem Phys 120(2):1055–1058

    Article  Google Scholar 

  19. Noriaki S (2004) Low-cost synthesis of single-walled carbon nanohorns using the arc in water method with gas injection. J Phys D Appl Phys 37(8):L17

    Article  Google Scholar 

  20. Tatsuya H, Kondo H, Ishikawa K, Kano H, Sekine M, Hori M (2012) Ultrahigh-speed synthesis of nanographene using alcohol in-liquid plasma. Appl Phys Express 5(3):035101

    Article  Google Scholar 

  21. Dai XJ, Corr CS, Ponraj SB, Maniruzzaman M, Ambujakshan AT, Chen Z, Kviz L, Lovett R, Rajmohan GD, de Celis DR, Wright ML, Lamb PR, Krasik YE, Graves DB, Graham WG, d’Agostin R, Wang X (2016) Efficient and selectable production of reactive species using a nanosecond pulsed discharge in gas bubbles in liquid. Plasma Process Polym 13(3):306–310

    Article  CAS  Google Scholar 

  22. Frondel C, Marvin UB (1967) Lonsdaleite, a hexagonal polymorph of diamond. Nature 214:587–589

    Article  CAS  Google Scholar 

  23. Shang J, Ma L, Li J, Ai W, Yu T, Gurzadyan GG (2012) The origin of fluorescence from graphene oxide. Sci Rep 2:792

    Article  Google Scholar 

  24. Fayette L, Marcus B, Mermoux M, Tourillon G, Laffon K, Parent P, Normand FL (1998) Local order in CVD diamond films: comparative Raman, X-ray-diffraction, and X-ray-absorption near-edge studies. Phys Rev B 57:14123–14132

    Article  CAS  Google Scholar 

  25. Jonathan C, McDonough JK, Peerally F, Medrano R, Neitzel I, Gogotsi Y, Osswald S (2013) Raman spectroscopy study of the nanodiamond-to-carbon onion transformation. Nanotechnology 24:205703

    Article  Google Scholar 

  26. Merel P, Tabbal M, Chaker M, Moisa S, Margot J (1998) Direct evaluation of the sp3 content in diamond-like-carbon films by XPS. Appl Surf Sci 136:105–110

    Article  CAS  Google Scholar 

  27. Petit T, Arnault J-C, Girard HA, Sennour M, Kang T-Y, Cheng C-L, Bergonzo P (2012) Oxygen hole doping of nanodiamond. Nanoscale 4:6792–6799

    Article  CAS  Google Scholar 

  28. Burleson T, Yusuf N, Stanishevsky A (2011) Surface modification of nanodiamonds for biomedical application and analysis by infrared spectroscopy. J Ach Mater Manuf Eng 37:258–263

    Google Scholar 

  29. Shenderova O, Panich AM, Moseenkov S, Hens SC, Kuznetsov V, Vieth H-M (2011) Hydroxylated detonation nanodiamond: FTIR, XPS, and NMR studies. J Phys Chem C 115:19005–19011

    Article  CAS  Google Scholar 

  30. Yanguas-Gil A, Hueso JL, Cotrino J, Caballero A, González-Elipe AR (2004) Reforming of ethanol in a microwave surface-wave plasma discharge. Appl Phys Lett 85:4004–4006

    Article  CAS  Google Scholar 

  31. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814

    Article  CAS  Google Scholar 

  32. Cullity B, Stock S (1978) Principles of X-ray diffraction. Addison-Wesley, Rading

    Google Scholar 

  33. Ostrikov K, Neyts EC, Meyyappan M (2013) Plasma nanoscience: from nano-solids in plasmas to nano-plasmas in solids. Adv Phys 62(2):113–224

    Article  CAS  Google Scholar 

  34. Hou P-X, Liu C, Cheng H-M (2008) Purification of carbon nanotubes. Carbon 46:2003–2025

    Article  CAS  Google Scholar 

  35. Gruen DM (2009) Nanocrystalline diamond films. Annu Rev Mater Res 29:211–259

    Google Scholar 

  36. Chen Q, Kitamura T, Saito K, Haruta K, Yamano Y, Ishikawa T, Shirai H (2008) Microplasma discharge in ethanol solution: characterization and its application to the synthesis of carbon microstructures. Thin Solid Films 516(13):4435–4440

    Article  CAS  Google Scholar 

  37. Rincón R, Jiménez M, Muñoz J, Sáez M, Calzada MD (2014) Hydrogen production from ethanol decomposition by two microwave atmospheric pressure plasma sources: surfatron and TIAGO torch. Plasma Chem Plasma Process 34:145–157

    Article  Google Scholar 

  38. Levko D, Tsymbalyuk A (2012). Ethanol reforming in non-equilibrium plasma of glow discharge. arXiv:1205.1211

  39. Yang Y, Cho YI, Fridman A (2012) Plasma discharge in liquid: water treatment and applications. CRC Press, Boca Raton

    Google Scholar 

  40. Chow L, Zhou D, Hussain A, Kleckley S, Zollinger K, Schulte A, Wang H (2000) Chemical vapor deposition of novel carbon materials. Thin Solid Films 368(2):193–197

    Article  CAS  Google Scholar 

  41. Gottlieb S, Wöhrl N, Schulz S, Buck V (2016) Simultaneous synthesis of nanodiamonds and graphene via plasma enhanced chemical vapor deposition (MW PE-CVD) on copper. SpringerPlus 5:568

    Article  Google Scholar 

  42. Gracio JJ, Fan QH, Madaleno JC (2010) Diamond growth by chemical vapour deposition. J Phys D Appl Phys 43:374017

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge great technical support from R. Lovett and A. Voda. We also acknowledge the RMIT University for access to their XPS facility and use of facilities within the Monash X-ray Platform.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiujuan J. Dai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Magniez, K., Duchemin, M. et al. Rapid Formation of Diamond-Like Nano-Carbons in a Gas Bubble Discharge in Liquid Ethanol. Plasma Chem Plasma Process 38, 75–87 (2018). https://doi.org/10.1007/s11090-017-9843-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-017-9843-5

Keywords

Navigation