Skip to main content

Experimental Study of Nitrogen Oxides and Ozone Generation by Corona-Like Dielectric Barrier Discharge with Airflow in a Magnetic Field

Abstract

We investigated nitrogen monoxide, nitrogen dioxide and ozone generation for corona-like dielectric barrier discharge in a stationary magnetic field with airflow. The magnetic field was produced by the permanent magnet. We showed that nitrogen monoxide could be easily generated at relatively low voltages, by application of a magnetic field on the hollow needle to mesh with a dielectric barrier discharge. For higher voltages generation of nitrogen monoxide falls to zero, and generation of nitrogen dioxide and ozone with increasing voltage increases. We also demonstrated that simultaneous application of the magnetic field with airflow through the needle electrode affects the transition of the discharge from the high to the low voltage regime. This transition is accompanied by important changes in the production of nitrogen oxides and ozone. Changes in the discharge regime are reflected by changes in the voltage–current waveforms. The obtained results could be interesting for various biomedical applications or bacterial decontamination of surfaces.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. 1.

    Malik MA (2016) Plasma Chem Plasma Process 36:737–766

    CAS  Article  Google Scholar 

  2. 2.

    Sysolyatina E, Mukhachev A, Yurova M, Grushin M, Karalnik V, Petryakov A, Trushkin N, Ermolaeva S, Akishev Y (2014) Plasma Process Polym 11:315–334

    CAS  Article  Google Scholar 

  3. 3.

    Janda M, Martišovitš V, Hensel K, Machala Z (2016) Plasma Chem Plasma Process 36:767–781

    CAS  Article  Google Scholar 

  4. 4.

    Malik MA, Schoenbach KH, Heller R (2014) Chem Eng J 256:222–229

    CAS  Article  Google Scholar 

  5. 5.

    Pekárek S, Rosenkranz J (2002) Ozone Sci Eng 24:221–226

    Article  Google Scholar 

  6. 6.

    Pekárek S (2011) Eur Phys J D 61:657–662

    Article  Google Scholar 

  7. 7.

    Jodzis S (2003) Ozone Sci Eng 25:63–72

    CAS  Article  Google Scholar 

  8. 8.

    Yuan D, Wang Z, Ding C, He Y, Whiddon R, Cen K (2016) J Phys D Appl Phys 49:455203. doi:10.1088/0022-3727/49/45/455203

    Article  Google Scholar 

  9. 9.

    Akishev Y, Demyanov A, Karalnik V, Monich A, Trushkin N (2003) Plasma Phys Rep 29:82–91

    CAS  Article  Google Scholar 

  10. 10.

    Petit M, Goldman A, Goldman M (2002) J Phys D Appl Phys 35:2969–2977

    CAS  Article  Google Scholar 

  11. 11.

    Lee YH (2005) J Korean Phys Soc 47:74–78

    CAS  Google Scholar 

  12. 12.

    Ghasemi M, Sohbatzadeh F, Mirzanejhad S (2015) J Theor Appl Phys 9:177–183

    Article  Google Scholar 

  13. 13.

    Park JY, Kim GH, Kim JD, Koh HS, Lee DC (1998) Combust Sci Technol 133:65

    CAS  Article  Google Scholar 

  14. 14.

    Hao X, Mattson AM, Edelblute ChM, Malik MA, Heller LC, Kolb JF (2014) Plasma Process Polym 11:1044–1056

    CAS  Article  Google Scholar 

  15. 15.

    Kitayama J, Kuzumoto M (1999) J Phys D Appl Phys 32:3032–3040

    CAS  Article  Google Scholar 

  16. 16.

    Pekárek S (2013) J Phys D Appl Phys 46: 505207 (9 pp) doi:10.1088/0022-3727/46/50/505207

  17. 17.

    He Z, Yu F, Hu F, Yuan Y, Guo L, Li J (2007) Appl Plasma Sci Technol 9:706–708

    Article  Google Scholar 

  18. 18.

    Pekárek S (2012) J Phys D Appl Phys 45:075201. doi:10.1088/0022-3727/45/7/075201

    Article  Google Scholar 

  19. 19.

    Kogelschatz U, Eliason B, Hirch M (1988) Ozone Sci Eng 10:367–378

    CAS  Article  Google Scholar 

  20. 20.

    Yagi S, Tanaka M (1979) J Phys D Appl Phys 12:1509–1520

    CAS  Article  Google Scholar 

  21. 21.

    Abdelaziz AA, Ishijima T, Seto T, Osawa N, Wedaa H, Otani Y (2016) Plasma Sour Sci Technol 25:035012. doi:10.1088/0963-0252/25/3/035012

    Article  Google Scholar 

  22. 22.

    Fridman A (2008) Plasma chemistry. Cambridge University Press, New York

    Book  Google Scholar 

  23. 23.

    Becker KH, Kogelschatz U, Schoenbach KH, Barker RJ (2005) Non-equilibrium air plasmas at atmospheric pressure. IOP Publishing Ltd, Briston

    Google Scholar 

  24. 24.

    deB B, Darwent B (1970) NSRDS—NBS 31

  25. 25.

    Cheremisinoff PN (1977) Air pollution control and design handbook, Part 2, July 1

  26. 26.

    Zeldovich YB, Sadonikov PY, Frank-Kamenetskii DA (1947) Oxidation of Nitrogen in combustion. Academy of Science USSR Institute of Chemical Physics, Moscow-Leningrad

    Google Scholar 

Download references

Acknowledgement

This research has been supported by the Czech Science Foundation Grant Under Contract No. 17-19968S. The author would also like to thank Mr. P. Neugebauer for taking the photograph of the discharge.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stanislav Pekárek.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pekárek, S. Experimental Study of Nitrogen Oxides and Ozone Generation by Corona-Like Dielectric Barrier Discharge with Airflow in a Magnetic Field. Plasma Chem Plasma Process 37, 1313–1330 (2017). https://doi.org/10.1007/s11090-017-9831-9

Download citation

Keywords

  • AC corona discharge
  • Dielectric barrier discharge
  • Nitrogen oxides
  • Ozone
  • Magnetic field