Skip to main content

Degradation of 2-Nitrophenol by Dielectric Barrier Discharge System: The Influence of Carbon Doped TiO2 Photocatalyst Supported on Stainless Steel Mesh

Abstract

This study investigated the degradation of 2-nitrophenol (2-NP) in aqueous solution by dielectric barrier discharge (DBD) system alone and its combination with supported TiO2 photocatalysts. The TiO2 photocatalyst supported on a stainless steel mesh was synthesised using sol–gel solution of 8% polyacrylonitrile (PAN)/dimethylformamide/TiCl4 followed by pyrolysis in the furnace under N2 atmosphere at temperatures of 300, 350, or 400 °C for 3 h holding time. The supported catalysts were characterized for their morphologies, functional groups, crystallinity, surface areas and elemental chemical states by high resolution scanning electron microscope (HRSEM), Fourier transform infrared, X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) surface area, and X-ray photoelectron spectroscopy. The influence of solution pH on the degradation of 2-NP was investigated. The residual concentration of 2-NP and the intermediate compounds were quantified and identified using high-performance liquid chromatography coupled with mass spectrometry (HPLC–MS). The concentration of the dissolved ozone, hydrogen peroxide and hydroxyl radicals generated by the DBD in the presence or absence of a catalyst was monitored using ultraviolet–visible spectroscopy and photoluminescence spectroscopy. The HRSEM, HRTEM, XRD and BET analysis revealed that the optimal thermal conditions to obtain well supported uniformly grown, highly active crystalline TiO2 catalysts with high specific surface area was 350 °C at a 3 h holding time in N2 atmosphere with a flow rate of 20 mL/min. The supporting procedure simultaneously carbon doped the photocatalyst. The DBD system alone without catalysts successfully mineralised 58.6% of 2-NP within 60 min while combined DBD/supported TiO2 nanocrystals achieved 77.5% mineralisation within the same treatment time. The increase in mineralisation rate was attributed to the existence of a synergistic effect between the DBD system and the supported catalysts. 2-NP degradation proceeded via hydroxylation, nitration and denitration using DBD alone and combined DBD/Supported TiO2 photocatalyst. Catechol, hydroquinone, hydroxyl-1,4-benzoquinone, 2-nitrohydroquinone, and 2,4-dinitrophenol were identified as major intermediate products. The order of production of free reactive species by DBD alone and combined DBD with supported photocatalyst was OH° > H2O2 > O3.The results showed that the combined system was more than effective than DBD alone for the degradation of the 2-NP in aqueous solution.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

References

  1. Ammar S, Oturan N, Oturan MA (2007) J Environ Eng Manag 17(2):89–96

    CAS  Google Scholar 

  2. Illés E, Szabó E, Takács E, Wojnárovits L, Dombi A, Gajda-Schrantz K (2014) Sci Total Environ 472:178–184

    Article  Google Scholar 

  3. Boehncke A, Koennecker G, Mangelsdorf I, Wibbertmann A (2000) Concise international chemical assessment document 20, mononitrophenols. World Health Organization, Geneva

  4. Ahmed E, Nagaoka K, Fayez M, Abdel-Daim MM, Samir H, Watanabe G (2015) Environ Sci Pollut Res 22(14):10930–10942

    CAS  Article  Google Scholar 

  5. Richardson SD, Ternes TA (2011) Anal Chem 83(12):4614–4648

    CAS  Article  Google Scholar 

  6. US Environmental Protection Agency (2007) Memorandum to EDSTAC Members RE: Definition of “Endocrine Disruptor”. Washington DC, USA. http://www.epa.gov/endocrine. Accessed on 20 Feb 2007

  7. Magureanu M, Bogdan N, Piroi D, Mandache NB, Parvulescu V (2013) Plasma Chem Plasma Process 33:51–64

    CAS  Article  Google Scholar 

  8. Oller I, Malato S, Sánchez-Pérez JA (2011) Sci Total Environ 409(20):4141–4166

    CAS  Article  Google Scholar 

  9. Jiang B, Qiu JZS, Mingbo W, Yan QZ, Xue Q (2014) Chem Eng J 236:348–368

    CAS  Article  Google Scholar 

  10. Malik MA (2010) Plasma Chem Plasma Process 30:21–31

    CAS  Article  Google Scholar 

  11. Magureanu M, Piroi D, Mandache NB, David V, Medvedovici A, Parvulescu VI (2010) Water Res 44:3445–3453

    CAS  Article  Google Scholar 

  12. Magureanu M, Piroi D, Mandache NB, David V, Medvedovici A, Parvulescu VI, Bradu C (2011) Water Res 45:3407–3416

    CAS  Article  Google Scholar 

  13. Locke BR, Sato M, Sunka P, Hoffmann MR, Chang JS (2006) Ind Eng Chem Res 45(3):882–905

    CAS  Article  Google Scholar 

  14. Bruggeman PJ, Locke BR (2013) Assessment of potential applications of plasma with liquid water. In: Low temperature plasma technology—Methods and applications, pp 1–12

  15. Mok YS, Jo JO, Lee HJ, Ahn HT, Kim JT (2007) Plasma Chem Plasma Process 27:51–64

    CAS  Article  Google Scholar 

  16. Oputu O, Chowdhury M, Nyamayaro K, Fatoki O, Fester V (2015) J Environ Sci 35:83–90

    Article  Google Scholar 

  17. Qi L, You H, Zhang Z, Feng C, Agtmaal S (2013) Int J Electrochem Sci 8:5457–5468

    CAS  Google Scholar 

  18. Ku Y, Hung JJ, Wang WY (2006) Water Environ Res 78(9):901–908

    CAS  Article  Google Scholar 

  19. Wankhade AV, Gaikwad GS, Dhonde MG, Khaty NT, Thakare SR (2013) Res J Chem Environ 17(1):84–94

    Google Scholar 

  20. Friedmann D, Mendive C, Bahnemann D (2010) Appl Catal B 99:398–406

    CAS  Article  Google Scholar 

  21. Gao L, Sun L, Wan S, Yu Z, Li M (2013) Chem Eng J 228:790–798

    CAS  Article  Google Scholar 

  22. Mouele ESM (2014) Unpublished Msc thesis to the Department of Chemistry, University of the Western Cape, South Africa, pp. 63–66

  23. Sahni M, Locke BR (2006) Ind Eng Chem Res 45:5819–5825

    CAS  Article  Google Scholar 

  24. Bader H, Hoigné J (1981) Water Res 15(4):449–456

    CAS  Article  Google Scholar 

  25. Leong KH, Monash P, Ibrahim S, Saravanan P (2014) Sol Energy 101:321–332

    CAS  Article  Google Scholar 

  26. Ba-Abbad MM, Kadhum AH, Mohamed AB, Takriff MS, Sopian K (2012) Int J Electrochem Sci 7:4871–4888

    CAS  Google Scholar 

  27. Shirke BS, Korake PV, Hankare PP, Bamane SR, Garadkar KM (2011) J Mater Sci Mater Electron 22:821–824

    CAS  Article  Google Scholar 

  28. Aziz AA, Puma GL, Ibrahim S, Saravan P (2013) J Exp Nano Sci 3:295–310

    Article  Google Scholar 

  29. Dhabbe RS, Kokate MR, Kadam AN, Garadkar KM, Suwarnkar MB (2014) J Mater Sci Mater Electron 25:3179–3189

    CAS  Article  Google Scholar 

  30. Abdo HS, Khali KA, Al-Deyab SS, Altaleb H, Sherif EM (2013) Fibers Polym 14(12):1985–1992

    CAS  Article  Google Scholar 

  31. Ren W, Ai Z, Jia F, Zhang L, Fan X, Zou Z (2007) Appl Catal B 69:138–144

    CAS  Article  Google Scholar 

  32. Rodríguez-González V, Obregón Alfaro S, Torres-Martínez LM, Cho SH, Lee SW (2010) Appl Catal B 98:229–234

    Article  Google Scholar 

  33. Fernández A, Lassaletta G, Jimknez VM, Justo A, GonzSlez-Elipe AR, Herrmann JM, Tahiri H, Ait-Ichou Y (1995) Appl Catal B 7:49–63

    Article  Google Scholar 

  34. Sheikhnejad-Bishe O, Zhao F, Rajabtabar-Darvishi A, Khodadad E, Mostofizadeh A, Huang Y (2014) Int J Electrochem Sci 9:4230–4240

    CAS  Google Scholar 

  35. Rong SP, Sun YB, Zhao ZH (2014) Chin Chem Lett 25:187–192

    CAS  Article  Google Scholar 

  36. Wang H, Li J, Quan X, Wu Y, Li G, Wang F (2007) J Hazard Mater 141:336–343

    CAS  Article  Google Scholar 

  37. Liu Y, Mei S, Iya-Sou D, Cavadias S, Ognier S (2012) Chem Eng Process 56:10–18

    CAS  Article  Google Scholar 

  38. Chong MN, Jin B, Chow CWK, Saint CP (2010) Water Resour 44:2997–3027

    CAS  Google Scholar 

  39. Lesage O, Falk L, Tatoulian M, Mantovani D, Ognier S (2013) Chem Eng Process 72:82–89

    CAS  Article  Google Scholar 

  40. Quiroz M, Sánchez-Salas JL, Reyna S, Bandala ER, Peralta-Hernández JM, Martínez-Huitle CA (2014) J Hazard Mater 268:6–13

    CAS  Article  Google Scholar 

  41. Wei L, Zhu H, Mao H, Gan F (2011) Sep Purif Technol 77:18–25

    CAS  Article  Google Scholar 

  42. Zhang W, Xiao X, An T, Song Z, Fu J, Sheng G, Cui M (2003) J Chem Technol Biotechnol 78:788–794

    CAS  Article  Google Scholar 

  43. Cañizares P, Saez C, Lobato J, Rodrigo MA (2004) Electrochimi Acta 49:4641–4650

    Article  Google Scholar 

  44. Kavitha V, Palanivelu K (2005) J Photochem Photobiol A Chem 170:83–95

    CAS  Article  Google Scholar 

Download references

Acknowledgement

The authors acknowledge Water Research Commission, South Africa (Project Number WRC/2013/K5/2364) for funding the research and Environmental and Nano Sciences Group, Department of Chemistry, University of the Western Cape, South Africa for the other assistance with analysis and characterisation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. O. Tijani.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tijani, J.O., Mouele, M.E.S., Tottito, T.C. et al. Degradation of 2-Nitrophenol by Dielectric Barrier Discharge System: The Influence of Carbon Doped TiO2 Photocatalyst Supported on Stainless Steel Mesh. Plasma Chem Plasma Process 37, 1343–1373 (2017). https://doi.org/10.1007/s11090-017-9824-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-017-9824-8

Keywords

  • Dielectric barrier discharge system
  • 2-Nitrophenol
  • Supported TiO2 photocatalyst
  • Transformation products