Plasma Chemistry and Plasma Processing

, Volume 37, Issue 4, pp 1149–1163 | Cite as

An Array of Micro-hollow Surface Dielectric Barrier Discharges for Large-Area Atmospheric-Pressure Surface Treatments

  • T. Homola
  • R. Krumpolec
  • M. Zemánek
  • J. Kelar
  • P. Synek
  • T. Hoder
  • M. Černák
Original Paper

Abstract

A robust, commercial micro-hollow plasma source was used to generate atmospheric-pressure plasma, of surface area 18 × 18 mm, in ambient air, nitrogen and argon. An electrode system consisting of 105 micro-hollow surface dielectric barrier discharges was powered by sinusoidal high-voltage at a frequency of 26.7 kHz. The influence of the plasmas on the polycarbonate surface was investigated by means of surface energy measurements and X-ray photoelectron spectroscopy. It emerged that short plasma exposures led to significant increases in surface energy. It is suggested that this may arise out of incorporation of polar groups on the polycarbonate surface. A thermal camera was used to monitor the plasma source surface temperatures for the gases at flow rates ranging from 0 to 5 L/min. It was found that the temperature of the micro-hollow ceramic when operated upon in ambient air decreased significantly from 147 °C at 0 L/min to 49 °C at 5 L/min. In order to investigate further the thermal properties of the plasma, optical emission spectroscopy was employed to monitor the vibrational and rotational temperatures of the plasma generated in ambient air. CCD camera spectroscopic measurements estimated plasma thickness and temperature distribution at high spatial resolution.

Keywords

Micro-hollow plasma Surface dielectric barrier discharge Ambient air plasma Plasma treatment Polycarbonate surface 

Supplementary material

11090_2017_9792_MOESM1_ESM.docx (687 kb)
Supplementary material 1 (DOCX 687 kb)

References

  1. 1.
    Schoenbach KH, Becker K (2016) 20 years of microplasma research: a status report. Eur Phys J D 70:29. doi:10.1140/epjd/e2015-60618-1 CrossRefGoogle Scholar
  2. 2.
    Foest R, Schmidt M, Becker K (2006) Microplasmas, an emerging field of low-temperature plasma science and technology. Int J Mass Spectrom 248:87–102. doi:10.1016/j.ijms.2005.11.010 CrossRefGoogle Scholar
  3. 3.
    Becker K, Koutsospyros A, Yin S-M et al (2005) Environmental and biological applications of microplasmas. Plasma Phys Controll Fusion 47:B513–B523. doi:10.1088/0741-3335/47/12B/S37 CrossRefGoogle Scholar
  4. 4.
    Iza F, Kim GJ, Lee SM et al (2008) Microplasmas: sources, particle kinetics, and biomedical applications. Plasma Process Polym 5:322–344CrossRefGoogle Scholar
  5. 5.
    Meyer C, Demecz D, Gurevich EL et al (2012) Development of a novel dielectric barrier microhollow cathode discharge for gaseous atomic emission spectroscopy. J Anal At Spectrom 27:677–681. doi:10.1039/c2ja10225k CrossRefGoogle Scholar
  6. 6.
    Tachibana K, Nakamura T, Motomura H et al (2016) Monolithic structure of integrated coaxial microhollow dielectric barrier discharges: characterization for environmental and biomedical applications. Jpn J Appl Phys 55:07LB01. doi:10.7567/JJAP.55.07LB01 CrossRefGoogle Scholar
  7. 7.
    Jiang P-C, Wang W-C, Zhang S et al (2014) An uniform DBD plasma excited by bipolar nanosecond pulse using wire-cylinder electrode configuration in atmospheric air. Spectrochim Acta Part A Mol Biomol Spectrosc 122:107–112. doi:10.1016/j.saa.2013.10.004 CrossRefGoogle Scholar
  8. 8.
    Dutton J (1975) A survey of electron swarm data. J Phys Chem Ref Data 4:577. doi:10.1063/1.555525 CrossRefGoogle Scholar
  9. 9.
    Kozlov KV, Brandenburg R, Wagner H-E et al (2005) Investigation of the filamentary and diffuse mode of barrier discharges in N2/O2 mixtures at atmospheric pressure by cross-correlation spectroscopy. J Phys D Appl Phys 38:518–529. doi:10.1088/0022-3727/38/4/003 CrossRefGoogle Scholar
  10. 10.
    Brandenburg R, Maiorov VA, Golubovskii YB et al (2005) Diffuse barrier discharges in nitrogen with small admixtures of oxygen: discharge mechanism and transition to the filamentary regime. J Phys D Appl Phys 38:2187–2197. doi:10.1088/0022-3727/38/13/017 CrossRefGoogle Scholar
  11. 11.
    Klages C-P, Grishin A (2008) Plasma amination of low-density polyethylene by DBD afterglows at atmospheric pressure. Plasma Process Polym 5:368–376. doi:10.1002/ppap.200700142 CrossRefGoogle Scholar
  12. 12.
    Chiang M-H, Liao K-C, Lin I-M et al (2010) Effects of oxygen addition and treating distance on surface cleaning of ITO glass by a non-equilibrium nitrogen atmospheric-pressure plasma jet. Plasma Chem Plasma Process 30:553–563. doi:10.1007/s11090-010-9237-4 CrossRefGoogle Scholar
  13. 13.
    Homola T, Wu LYL, Černák M (2014) Atmospheric plasma surface activation of poly(ethylene terephthalate) film for roll-to-roll application of transparent conductive coating. J Adhes 90:296–309. doi:10.1080/00218464.2013.794110 CrossRefGoogle Scholar
  14. 14.
    Keil M, Rastomjee CS, Rajagopal A et al (1998) Argon plasma-induced modifications at the surface of polycarbonate thin films. Appl Surf Sci 125:273–286. doi:10.1016/S0169-4332(97)00501-1 CrossRefGoogle Scholar
  15. 15.
    Muir BW, Mc Arthur SL, Thissen H et al (2006) Effects of oxygen plasma treatment on the surface of bisphenol A polycarbonate: a study using SIMS, principal component analysis, ellipsometry, XPS and AFM nanoindentation. Surf Interface Anal 38:1186–1197. doi:10.1002/sia.2363 CrossRefGoogle Scholar
  16. 16.
    Seidel C, Kopf H, Gotsmann B et al (1999) Ar plasma treated and Al metallised polycarbonate: a XPS, mass spectroscopy and SFM study. Appl Surf Sci 150:19–33. doi:10.1016/S0169-4332(99)00012-4 CrossRefGoogle Scholar
  17. 17.
    Fridman A (2008) Plasma chemistry. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  18. 18.
    Šimek M, Dilecce G, DeBenedictis S (1995) On the use of the numerical simulation of the first positive system of N−2: 1. Emission and LIF analysis. Plasma Chem Plasma Process 15(3):427–449Google Scholar
  19. 19.
    Šimek M (2014) Optical diagnostics of streamer discharges in atmospheric gases. J Phys D Appl Phys 47:463001. doi:10.1088/0022-3727/47/46/463001 CrossRefGoogle Scholar
  20. 20.
    Hoder T, Šíra M, Kozlov KV, Wagner H-E (2009) 3D Imaging of the single microdischarge development in coplanar barrier discharges in synthetic air at atmospheric pressure. Contrib Plasma Phys 49:381–387. doi:10.1002/ctpp.200910035 CrossRefGoogle Scholar
  21. 21.
    von Woedtke T, Reuter S, Masur K, Weltmann K-D (2013) Plasmas for medicine. Phys Rep 530:291–320. doi:10.1016/j.physrep.2013.05.005 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • T. Homola
    • 1
  • R. Krumpolec
    • 1
  • M. Zemánek
    • 1
  • J. Kelar
    • 1
  • P. Synek
    • 1
  • T. Hoder
    • 1
  • M. Černák
    • 1
  1. 1.R&D Center for Low-Cost Plasma and Nanotechnology Surface Modifications (CEPLANT), Department of Physical Electronics, Faculty of ScienceMasaryk UniversityBrnoCzech Republic

Personalised recommendations