Plasma Chemistry and Plasma Processing

, Volume 37, Issue 2, pp 401–413 | Cite as

Surface Treatment of Human Hard Dental Tissues with Atmospheric Pressure Plasma Jet

  • Vedran Šantak
  • Alenka Vesel
  • Rok Zaplotnik
  • Marijan BišćanEmail author
  • Slobodan Milošević
Original Paper


Surface of human hard dental tissues (enamel and dentine) was treated using a helium single-electrode atmospheric pressure plasma jet (APPJ) with the aim of enhancing surface properties of treated material. Modification of the enamel and dentine surface was observed using contact angle measurements and X-ray photoelectron spectroscopy. Even a short treatment time (≈1 s) lead to a significant reduction in the contact angle: 45% for the dentine and 32% for the enamel. After the treatment, the water contact angle tends to return to original (untreated) value and it is shown that stability of wetting strongly depends on the duration of treatment. The surface of the untreated teeth samples consisted mostly of the elements C, O, N, Ca and P. Their relative concentrations changed during 9-min He APPJ treatment. Significant decrease of C and N relative concentrations suggested the removal of adsorbed carbon and nitrogen species and disclosure of underlying inorganic hydroxyapatite structure. The Ca/P ratio has increased from 1.26 to 1.72, which is very close to an ideal ratio for the highest volume of remineralisation of the human dental enamel. Oxidation of the transparent organic matrix in the enamel, one of the major processes in tooth bleaching, was confirmed with the increase of O concentration, from about 31 to 46 at.%. Helium APPJ treatment therefore proved to be a potential tool for chemical surface modification of hard human dental tissues.


Atmospheric pressure plasma jet (APPJ) Human hard dental tissue X-ray photoelectron spectroscopy (XPS) Dental surface modification Tooth remineralisation 



This study was supported by Croatian Science Foundation (Project 2753). R.Z. would like to acknowledge the support of NEWFELPRO Fellowship Project Grant Agreement No. 1.


  1. 1.
    Whittaker A, Graham E, Baxter R, Jones A, Richardson P, Meek G, Campbell G, Aitken A, Baxter H (2004) Plasma cleaning of dental instruments. J Hosp Infect 56:37–41CrossRefGoogle Scholar
  2. 2.
    Junkar I, Primc G, Mivsek T, Resnik M, Kovac J, Sever Skapin A, Podgornik A, Mozetic M (2015) Plasma treatment-promising tool for preparation of disposable monolithic columns. J Anal Bioanal Tech 6:253CrossRefGoogle Scholar
  3. 3.
    Kim JH, Lee MA, Han GJ, Cho BH (2014) Plasma in dentistry: a review of basic concepts and applications in dentistry. Acta Odontol Scand 72:1–12CrossRefGoogle Scholar
  4. 4.
    Santak V, Zaplotnik R, Milosevic S, Klaric E, Tarle Z (2014) Atmospheric pressure plasma jet as an accelerator of tooth bleaching. Acta Stomatol Croat 48:268–278CrossRefGoogle Scholar
  5. 5.
    Santak V, Zaplotnik R, Tarle Z, Milosevic S (2015) Optical emission spectroscopy of an atmospheric pressure plasma jet during tooth bleaching gel treatment. Appl Spectrosc 69:1327–1333Google Scholar
  6. 6.
    Lehmann A, Rueppell A, Schindler A, Zylla IM, Seifert HJ, Nothdurft F, Hannig M, Rupf S (2013) Modification of enamel and dentin surfaces by non-thermal atmospheric plasma. Plasma Process Polym 10:262–270CrossRefGoogle Scholar
  7. 7.
    Chen M, Zhang Y, Driver MS, Caruso AN, Yu Q, Wang Y (2013) Surface modification of several dental substrates by non-thermal, atmospheric plasma brush. Dent Mater 29:871–880CrossRefGoogle Scholar
  8. 8.
    Currey J, Brear K (1990) Hardness, young modulus and yield stress in mammalian mineralized tissues. J Mater Sci Mater Med 1:14–20CrossRefGoogle Scholar
  9. 9.
    Limeback H (1991) Molecular mechanisms in dental hard tissue mineralization. Curr Opin Dent 1:826835Google Scholar
  10. 10.
    Margolis HC, Beniash E, Fowler CE (2006) Role of macromolecular assembly of enamel matrix proteins in enamel formation. J Dent Res 85:775–793CrossRefGoogle Scholar
  11. 11.
    Dorozhkin SV (2009) Calcium orthophosphates in nature, biology and medicine. Materials 2:399–498CrossRefGoogle Scholar
  12. 12.
    Kay M, Young R, Posner A (1964) Crystal structure of hydroxyapatite. Nature 204:1050–1052CrossRefGoogle Scholar
  13. 13.
    Lafon JP, Champion E, Bernache-Assollant D (2008) Processing of AB-type carbonated hydroxyapatite Ca10-x(PO4)6-x(CO3)x(OH)2-x-2y(CO3)y ceramics with controlled composition. J Eur Ceram Soc 28:139–147CrossRefGoogle Scholar
  14. 14.
    Passey B, Robinson T, Ayliffe L, Cerling T, Sponheimer M, Dearing M, Roeder B, Ehleringer J (2005) Carbon isotope fractionation between diet, breath CO2, and bioapatite in different mammals. J Archaeol Sci 32:1459–1470CrossRefGoogle Scholar
  15. 15.
    Vieira A, Hancock R, Limeback H, Schwartz M, Grynpas M (2003) How does fluoride concentration in the tooth affect apatite crystal size? J Dent Res 82:909–913CrossRefGoogle Scholar
  16. 16.
    Rosales J, Marshall G, Marshall S, Watanabe L, Toledano M, Cabrerizo M, Osorio R (1999) Acid-etching and hydration influence on dentin roughness and wettability. J Dent Res 78:1554–1559CrossRefGoogle Scholar
  17. 17.
    Osorio R, Ceballos L, Tay F, Cabrerizo-Vilchez M, Toledano M (2002) Effect of sodium hypochlorite on dentin bonding with a polyalkenoic acid-containing adhesive system. J Biomed Mater Res 60:316–324CrossRefGoogle Scholar
  18. 18.
    Ishida T, Tonami K, Araki K, Kurosaki N (2008) Properties of human dentin surface after ArF excimer laser irradiation. J Med Dent Sci 55:155–161Google Scholar
  19. 19.
    Koban I, Duske K, Jablonowski L, Schröder K, Nebe B, Sietmann R et al (2011) Atmospheric plasma enhances wettability and osteoblast spreading on dentin in vitro: proof-of-principle. Plasma Process Polym 8:975–982CrossRefGoogle Scholar
  20. 20.
    Zhang Y, Yu Q, Wang Y (2014) Non-thermal atmospheric plasmas in dental restoration: improved resin adhesive penetration. J Dent 42:1033–1042CrossRefGoogle Scholar
  21. 21.
    Chu P, Chen J, Wang L, Huang N (2002) Plasma-surface modification of biomaterials. Mater Sci Eng R 36:143–206CrossRefGoogle Scholar
  22. 22.
    Tendero C, Tixier C, Tristant P, Desmaison J, Leprince P (2006) Atmospheric pressure plasmas: a review. Spectrochim Acta B 61:2–30CrossRefGoogle Scholar
  23. 23.
    Ziglo MJ, Nelson AE, Heo G, Major PW (2009) Argon laser induced changes to the carbonate content of enamel. Appl Surf Sci 255:6790–6794CrossRefGoogle Scholar
  24. 24.
    Taube F, Ylmen R, Shchukarev A, Nietzsche S, Noren JG (2010) Morphological and chemical characterization of tooth enamel exposed to alkaline agents. J Dent 38:72–81CrossRefGoogle Scholar
  25. 25.
    Yoshida Y, Van Meerbeek B, Nakayama Y, Snauwaert J, Hellemans L, Lambrechts P, Vanherle G, Wakasa K (2000) Evidence of chemical bonding at biomaterial-hard tissue interfaces. J Dent Res 79:709–714CrossRefGoogle Scholar
  26. 26.
    Zaplotnik R, Kregar Z, Bišćan M, Vesel A, Cvelbar U, Mozetic M, Milosevic S (2014) Multiple vs. single harmonics AC-driven atmospheric plasma jet. EPL (Europhys Lett) 106:25001–p1–25001–p6CrossRefGoogle Scholar
  27. 27.
    Lou L, Nelson AE, Heo G, Major PW (2008) Surface chemical composition of human maxillary first premolar as assessed by X-ray photo-electron spectroscopy (XPS). Appl Surf Sci 254:6706–6709CrossRefGoogle Scholar
  28. 28.
    Eimar H, Siciliano R, Abdallah MN, Nader SA, Amin WM, Martinez PP, Celemin A, Cerruti M, Tamimi F (2012) Hydrogen peroxide whitens teeth by oxidizing the organic structure. J Dent 40:E25–E33CrossRefGoogle Scholar
  29. 29.
    Watanabe H, Saito K, Kokubun K, Sasaki H, Yoshinari M (2012) Change in surface properties of zirconia and initial attachment of osteoblast-likecells with hydrophilic treatment. Dent Mater J 31:806–814CrossRefGoogle Scholar
  30. 30.
    Lopes BB, Ayres APA, Lopes LB, Negreiros WM, Giannini M (2014) The effect of atmospheric plasma treatment of dental zirconia ceramics on the contact angle of water. Appl Adhes Sci 2:1–8CrossRefGoogle Scholar
  31. 31.
    Modic M, Junkar I, Vesel A, Mozetic M (2012) Aging of plasma treated surfaces and their effects on platelet adhesion and activation. Surf Coat Technol 213:98–104CrossRefGoogle Scholar
  32. 32.
    Clasen A, Hannig M, Skjorland K, Sonju T (1997) Analytical and ultrastructural studies of pellicle on primary teeth. Acta Odontol Scand 55:339–343Google Scholar
  33. 33.
    Vesel A, Mozetic M (2009) Surface functionalization of organic materials by weaklyionized highly dissociated oxygen plasma. In: Petrovic ZL, Malovic G, Maric D (eds) Second international workshop on non-equilibrium processes in plasmas and environmental science, vol 162 of Journal of Physics Conference Series, p 012015, Belgrade, Serbia, 23–26 Aug 2008Google Scholar
  34. 34.
    Kylian O, Rauscher H, Gilliland D, Bretagnol F, Rossi F (2008) Removal of model proteins by means of low-pressure inductively coupled plasma discharge. J Phys D Appl Phys 41:095201–095208CrossRefGoogle Scholar
  35. 35.
    Lu H, Campbell C, Graham D, Ratner B (2000) Surface characterization of hydroxyapatite and related calcium phosphates by XPS and TOF-SIMS. Anal Chem 72:2886–2894CrossRefGoogle Scholar
  36. 36.
    Tanaka T, Kobayashi T, Takii H, Kamasaka H, Ohta N, Matsuo T, Yagi N, Kuriki T (2013) Optimization of calcium concentration of saliva with phosphoryloligosaccharides of calcium (POs-Ca) for enamel remineralization in vitro. Arch Oral Biol 58:174–180CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Vedran Šantak
    • 1
    • 3
  • Alenka Vesel
    • 2
  • Rok Zaplotnik
    • 2
    • 3
  • Marijan Bišćan
    • 3
    Email author
  • Slobodan Milošević
    • 3
  1. 1.Dental Office - Community Health CenterZagrebCroatia
  2. 2.Jozef Stefan InstituteLjubljanaSlovenia
  3. 3.Institute of PhysicsZagrebCroatia

Personalised recommendations