Plasma Chemistry and Plasma Processing

, Volume 37, Issue 1, pp 207–221 | Cite as

Seed Germination and Early Growth Responses to Seed Pre-treatment by Non-thermal Plasma in Hemp Cultivars (Cannabis sativa L.)

  • B. SeraEmail author
  • M. Sery
  • B. Gavril
  • I. Gajdova
Original Paper


The two key questions addressed in this paper were whether different cultivars of hemp (Cannabis sativa L.) have the same reactions to non-thermal plasma seed pre-treatments and whether different plasma sources have different effects on the seeds. Seed germination and early growth of hemp in design of hierarchical analysis of variance was conducted. Differences in response among seeds of three hemp cultivars (‘Finola’, ‘Bialobrzeskie’, ‘Carmagnola’) to the non-thermal plasma pre-treatment generated by two apparatuses (gliding arc and downstream microwave devices) in four time expositions (0, 180, 300, 600 s) were found. The high importance was found in type of apparatus and time exposition. A positive/neutral effect was observed in all measured characteristics after gliding arc plasma pre-treatment. Gliding arc pre-treatment increased the length of seedlings, seedling accretion and weight of seedling in both cv. ‘Finola’ and cv. ‘Bialobrzeskie’ hemp. On the other hand, the downstream microwave apparatus had an inhibiting effect on all tested hemp cultivars. It was the first time when significant differences in response to non-thermal pre-treatment were found in taxonomically close plants. The results obtained in this study describes different effect of various plasma treatment on germination and early growth of hemp seeds. The direct pre-treatment of non-thermal plasma discharge in condition of atmospheric pressure was better. Results of our experiment show that the use of non-thermal plasma pre-treatment may increase survival of some hemp cultivars during seedlings establishment in a drier period and may be used in new agro-technical measures in unconventional agriculture.


Hemp cultivars Nested ANOVA Non-thermal plasma Plasma device Seed germination 



We are thankful to prof. Petr Spatenka and prof. Eugen Hnatiuc for their lending the both plasma apparatus. The preparation of the manuscript was funded by the both Faculty of Natural Science Comenius University and Faculty of Education University of South Bohemia.


  1. 1.
    Schultes RE, Hofmann A (1980) The botany and chemistry of hallucinogens. Thomas, SpringfieldGoogle Scholar
  2. 2.
    Alden DM, Proops JLR, Gay PW (1998) Industrial hemp’s double dividend: a study for the USA. Ecol Econ 25:291–301CrossRefGoogle Scholar
  3. 3.
    Small E, Marcus D (2002) In: Janick J, Whipkey A (eds) Trends in new crops and new uses. ASHS Press, AlexandriaGoogle Scholar
  4. 4.
    Sawler J, Stout JM, Gardner KM, Hudson D, Vidmar J, Butler L, Page JE, Myles S (2015) The genetic structure of marijuana and hemp. PLoS ONE. doi: 10.1371/journal.pone.0133292 Google Scholar
  5. 5.
    Meijer EPM (1995) Fibre hemp cultivars: a survey of origin, ancestry, availability and brief agronomic characteristics. J Int Hemp Assoc 2:66–73Google Scholar
  6. 6.
    Amaducci S, Scordia D, Liu FH, Zhang Q, Guo H, Testa G, Cosentino SL (2015) Key cultivation techniques for hemp in Europe and China. Ind Crops Prod 68:2–16. doi: 10.1016/j.indcrop.2014.06.041 CrossRefGoogle Scholar
  7. 7.
    Kolarikova M, Ivanova T, Hutla P, Havrland B (2015) Economic evaluation of hemp (Cannabis sativa) grown for energy purposes (briquettes) in the Czech Republic. Agron Res 13:328–336Google Scholar
  8. 8.
    Liu M, Fernando D, Daniel G, Madsen B, Meyer AS, Ale MT, Thygesen A (2015) Effect of harvest time and field retting duration on the chemical composition, morphology and mechanical properties of hemp fibers. Ind Crops Prod 69:29–39. doi: 10.1016/j.indcrop.2015.02.010 CrossRefGoogle Scholar
  9. 9.
    Kotyza P (2012) In: Think together 2012, doctor scientific conference 6.2.2012. Czech University of Life Sciences, Praha.
  10. 10.
    Fortenbery TR, Bennett M (2004) Opportunities for commercial hemp production. Rev Agric Econ 26:97–117. doi: 10.1111/j.1467-9353.2003.00164.x CrossRefGoogle Scholar
  11. 11.
    Šerá B, Špatenka P, Šerý M, Vrchotová N, Hrušková I (2010) Influence of plasma treatment on corn germination and early growth. IEEE Trans Plasma Sci 38:2963–2968. doi: 10.1109/TPS.2010.2060728 CrossRefGoogle Scholar
  12. 12.
    Jiang JF, He X, Li L, Li JG, Shao HL, Xu QL, Ye RH, Dong YH (2014) Effect of cold plasma treatment on seed germination and growth of wheat. Plasma Sci Technol. doi: 10.1088/1009-0630/16/1/12 Google Scholar
  13. 13.
    Bormashenko E, Shapira Y, Grynyov R, Whyman G, Bormashenko Y, Drori E (2015) Interaction of cold radiofrequency plasma with seeds of beans (Phaseolus vulgaris). J Exp Bot. doi: 10.1093/jxb/erv206 Google Scholar
  14. 14.
    Bormashenko E, Grynyov R, Bormashenko Y, Drori E (2012) Cold radiofrequency plasma treatment modifies wettability and germination speed of plant seeds. Sci Rep 2:741–748. doi: 10.1038/srep00741 CrossRefGoogle Scholar
  15. 15.
    Li L, Jiang JF, Li JG, Shen MC, He X, Shao HL, Dong YH (2014) Effects of cold plasma reatment on seed germination and seedling growth of soybean. Sci Rep. doi: 10.1038/srep05859 Google Scholar
  16. 16.
    Li L, Li JG, Shen MC, Yhang C, Dong YH (2015) Cold plasma treatment enhances oilseed rape seed germination under drought stress. Sci Rep. doi: 10.1038/srep13033 Google Scholar
  17. 17.
    Henselova M, Slovakova L, Martinka M, Zahoranova A (2012) Growth, anatomy and enzyme activity changes in maize roots induced by treatment of seeds with low-temperature plasma. Biologia 67:490–497. doi: 10.2478/s11756-012-0046-5 CrossRefGoogle Scholar
  18. 18.
    Mildaziene V, Pauzaite G, Malakauskiene A, Zukiene R, Nauciene Z, Filatova I, Azharonok V, Lyushkevich V (2016) Response of perennial woody plants to seed treatment by electromagnetic field and low-temperature plasma. Bioelectromagnetics. doi: 10.1002/bem.22003 Google Scholar
  19. 19.
    Stolárik T, Henselová M, Martinka M, Novák O, Zahoranová A, Černák M (2015) Effect of low-temperature plasma on the structure of seeds, growth and metabolism of endogenous phytohormones in pea (Pisum sativum L.). Plasma Chem Plasma Process 35:659–676. doi: 10.1007/s11090-015-9627-8 CrossRefGoogle Scholar
  20. 20.
    Filátová I, Azharonok V, Kadyrov M, Beljavsky V, Gvozdov A, Shik A, Antonuk A (2011) The effect of plasma treatment of seeds of some grain and legumes on their sowing quality and productivity. Rom J Phys 56:139–143Google Scholar
  21. 21.
    Mihai AL, Dobrin D, Magureanu M, Popa ME (2014) Possitive effect of non-thermal plasma treatment on radish seed. Rom Rep Phys 66:1110–1117Google Scholar
  22. 22.
    Šerá B, Straňák V, Šerý M, Tichý M, Špatenka P (2008) Germination of Chenopodium album in response to microwive plasma treatment. Plasma Sci Technol 10:506–511. doi: 10.1088/1009-0630/10/4/22 CrossRefGoogle Scholar
  23. 23.
    Šerá B, Šerý M, Straňák V, Špatenka P, Tichý M (2009) Does cold plasma change the seed dormancy? Study on seeds of Lambs Quarters (Chenopodium album agg.). Plasma Sci Technol 11:750–754CrossRefGoogle Scholar
  24. 24.
    Kitazaki S, Koga K, Shiratani M, Hayashi N (2012) Growth enhancement of radish sprouts induced by low pressure O-2 radio frequency discharge plasma irradiation. Jap J Appl Phys. doi: 10.1143/JJAP.51.01AE01 Google Scholar
  25. 25.
    Okumura T, Muramoto Y, Shimizu N (2012) Influence of DC electric field on growth of daikon radish (Raphanus sativus). IEEE Trans Dielectr Electr Insul 19:2237–3341CrossRefGoogle Scholar
  26. 26.
    OECD (2012) OECD schemes for the varietal certification or the control of seed moving in international trade. List of varieties eligible for seed certification. OECD, ParisGoogle Scholar
  27. 27.
    Jankauskiene Z, Gruzdeviene E (2009) In: Noviks G (ed) Proceedings of the 7th international scientific and practical conference. Environment, technology, resources, RezekneGoogle Scholar
  28. 28.
    Gavril B, Hnatiuc E, Sera B, Hruskova I, Padureanu S, Haisan C (2011) XIXth symposium on physics of switching arc. University of Technology, BrnoGoogle Scholar
  29. 29.
    Šerá B, Gajdová I, Šerý M, Špatenka P (2013) New physicochemical treatment method of Poppy seeds for agriculture and food industries. Plasma Sci Technol 15:935–938. doi: 10.1088/1009-0630/15/9/19 CrossRefGoogle Scholar
  30. 30.
    Šerý M, Špatenka P, Pavlik J, Messelhauser J (2000) Chromatic monitoring of downstream microwave plasma source. Czech J Phys 50:481–486CrossRefGoogle Scholar
  31. 31.
    Hunnekens B, Peters F, Avramidis G, Krause A, Militz H, Viol W (2016) Plasma treatment of wood-polymer composites: a comparison of three different discharge types and their effect on surface properties. J Appl Polym Sci. doi: 10.1002/app.43376 Google Scholar
  32. 32.
    Simor M, Rahel J, Cernak M, Imahori Y, Stefecka M, Kando M (2003) Atmospheric-pressure plasma treatment of polyester nonwoven fabrics for electroless plating. Surf Coat Tech 172:1–6. doi: 10.1016/S0257-8972(03)00313-X CrossRefGoogle Scholar
  33. 33.
    Homola T, Matousek J, Hergelova B, Kormunda M, Wu LDYL, Cernak M (2012) Activation of poly(methyl methacrylate) surfaces by atmospheric pressure plasma. Polym Degrad Stab 97:886–892. doi: 10.1016/j.polymdegradstab.2012.03.029 CrossRefGoogle Scholar
  34. 34.
    Śerá B, Gajdová I, Černák M, Gavril B, Hnatiuc E, Kováčik D, Kříha V, Sláma J, Šerý M, Špatenka P (2012) In: Proceedings of the international conference on optimization of electrical and electronic equipment. OPTIM, BrasovGoogle Scholar
  35. 35.
    Šerá B (2013) In: Bláha L, Šerá B (eds) Importance of plant integrity in research. Plant breeding and production. Powerprint, Praha (in Czech) Google Scholar
  36. 36.
    Jiang JF, Lu YF, Li JG, Li L, He X, Shao HL, Dong YH (2014) Effect of seed treatment by cold plasma on the resistance of tomato to Ralstonia solanacearum (Bacterial Wilt). PLoS ONE. doi: 10.1371/journal.pone.0097753 Google Scholar
  37. 37.
    Zahoranova A, Henselova M, Hudecova D, Kalinakova B, Kovacik D, Medvecka V, Cernak M (2015) Effect of cold atmospheric pressure plasma on the wheat seedlings vigor and on the inactivation of microorganisms on the seeds surface. Plasma Chem Plasma Process 36:397–414. doi: 10.1007/s11090-015-9684-z CrossRefGoogle Scholar
  38. 38.
    Baier M, Görgen M, Ehlbeck J, Knorr D, Herppich WB, Schlüter O (2014) Non-thermal atmospheric pressure plasma: screening for gentle process conditions and antibacterial efficiency on perishable fresh produce. Innov Food Sci Emerg Technol 22:147–157. doi: 10.1016/j.ifset.2014.01.011 CrossRefGoogle Scholar
  39. 39.
    Tappi S, Gozzi G, Vannini L, Berardinelli A, Romani S, Ragni L, Rocculi P (2016) Cold plasma treatment for fresh-cut melon stabilization. Innov Food Sci Emerg Technol 33:225–233. doi: 10.1016/j.ifset.2015.12.022 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Landscape Ecology, Faculty of Natural SciencesComenius UniversityBratislavaSlovakia
  2. 2.Department of Biology, Faculty of EducationUniversity of South BohemiaCeske BudejoviceCzech Republic
  3. 3.Department of Physics, Faculty of EducationUniversity of South BohemiaCeske BudejoviceCzech Republic
  4. 4.Department of Electrical Engineering and Electrical MachinesGheorghe Asachi Technical University of IaşiJudetul IaşiRomania
  5. 5.BechyněCzech Republic

Personalised recommendations