Skip to main content

CO(B 1Σ+A 1Π) Angstrom System for Gas Temperature Measurements in CO2 Containing Plasmas

Abstract

CO2 containing plasmas are of growing interest for greenhouse gas remediation and dry gas reforming. In this paper, we show that the optical emission spectrum of CO(B-A) transition can be used for gas temperature determination in CO2 containing plasmas. The study was performed in a packed-bed reactor and compared with previously published results for a MW discharge. The CO emission is mainly produced by direct electron excitation from ground state CO. The rotational temperature is determined by a fitting algorithm of the CO(B-A) (0-1) spectrum and the accuracy of the deduced rotational temperature is shown to be better than 30 K. Meanwhile, we also compared the results with the widely used Boltzmann plots of the CO(B-A) (0-1). The rotational lines corresponding to Q(18–24) yield accurately the gas temperature for spectra with a resolution in excess of 0.05 nm FWHM. Rotational lines with N < 18 cannot be used due to the overlap of rotational lines from different branches unless a spectral resolution of at least 5 pm is used.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tu X, Gallon HJ, Twigg MV, Gorry PA, Whitehead JC (2011) J Phys D Appl Phys 44:274007

    Article  Google Scholar 

  2. Bo Z, Yan J, Li X, Chi Y, Cen K (2008) Int J Hydrogen Energ 33:5545–5553

    Article  CAS  Google Scholar 

  3. Andreev SN, Zakharov VV, Ochkin VN, Savinov SY (2004) Spectrochim Acta A 60:3361–3369

    Article  CAS  Google Scholar 

  4. Spencer L, Gallimore A (2011) Plasma Chem Plasma Process 31:79–89

    Article  CAS  Google Scholar 

  5. Wang Q, Yan B, Jin Y, Cheng Y (2009) Energ Fuel 23:4196–4201

    Article  CAS  Google Scholar 

  6. Kameshima S, Tamura K, Ishibashi Y, Nozaki (2015) Catal Today 256:67–75

    Article  CAS  Google Scholar 

  7. Silva T, Britun N, Godfroid T, Snyders R (2014) Plasma Sour Sci Technol 23:025009

    Article  Google Scholar 

  8. Brehmer F, Welzel S, van de Sanden MCM, Engeln R (2014) J Appl Phys 116:123303

    Article  Google Scholar 

  9. Brehmer F, Welzel S, van der Klarenaar BLM, Meiden HJ, van de Sanden MCM, Engeln R (2015) J Phys D Appl Phys 48:155201

    Article  Google Scholar 

  10. Silva T, Britun N, Godfroid T, Snyders R (2014) Opt Lett 39:6146–6149

    Article  Google Scholar 

  11. Whitehead C (2016) J Phys D Appl Phys 49:243001

    Article  Google Scholar 

  12. Nozaki T, Hiroyuki T, Okazaki K (2006) Energ Fuel 20:339–345

    Article  CAS  Google Scholar 

  13. http://www.technicalglass.com/fused_quartz_transmission.html

  14. Plyler EK, Blaine LR, Tidwell ED (1955) J Res Nat Bur Stand 55:183–189

    Article  CAS  Google Scholar 

  15. Bruggeman PJ, Sadeghi N, Schram DC, Linss V (2014) Plasma Sour Sci Technol 23:023001

    Article  Google Scholar 

  16. Drake DJ, Popović S, Vušković L (2009) J Appl Phys 106:083305

    Article  Google Scholar 

  17. Cruden BA, Rao M, Sharma SP, Meyyappan M (2002) J Appl Phys 91:8955–8964

    Article  CAS  Google Scholar 

  18. Krupenie PH (1966) National Standard Reference Data System

  19. Coster D, Brons F (1934) Physica 1:155–160

    Article  CAS  Google Scholar 

  20. Manley TC (1943) T Electrochem Soc 84:83–96

    Article  Google Scholar 

  21. Kameshima S, Tamura K, Mizukami R, Nozaki T (2015) Catal Today 256:67–75

    Article  CAS  Google Scholar 

  22. Schmid R, Gerö I (1935) Z für Physik 93:656–668

    Article  CAS  Google Scholar 

  23. Kovacs I (1969) Rotational Structure in the Spectra of Diatomic Molecules. Adam Hilger Ltd, London

    Google Scholar 

  24. van Gessel A, Hrycak B, Jasiński M, Mizeraczyk J, Mullen JJAM, Bruggeman PJ (2012) J Instrum 7:C02054

    Article  Google Scholar 

  25. Di Teodoro F, Rehm JE, Farrow RL, Paul PH (2000) J Chem Phys 113:3046–3054

    Article  Google Scholar 

  26. Uribe FJ, Mason EA, Kestin J (1990) J Phys Chem Ref Data 19:1123–1136

    Article  CAS  Google Scholar 

  27. Itakawa Y (2002) J Phys Chem Ref Data 31(3):749–767

    Article  Google Scholar 

  28. Gans T (2001) Schulz-von Der Gathen V and Dobele H F. Plasma Sour Sci Technol 10:17–23

    Article  CAS  Google Scholar 

  29. Astashkevich SA, Kaning M, Kaning E, Kokina NV, Lavrov BP, Ohl A, Ropcke J (1996) J Quant Spectrosc Ra 56:725–751

    Article  CAS  Google Scholar 

  30. Belikov AE, Sedel Nikov AI, Sukhinin GI, Sharafutdinov RG (1988) J Appl Mech Tech Phys 29:317–325

    Article  Google Scholar 

  31. Osiac M, Lavrov BP, Ropcke J (2002) J Quant Spectrosc Ra 74:471–491

    Article  CAS  Google Scholar 

  32. Drachev AI, Lavrov BP (1988) High Temp (English Translation) 26:129–136

    Google Scholar 

  33. Lavrov BP, Otorbaev DK (1978) Sov Tech Phys Lett 4:574–575

    Google Scholar 

Download references

Acknowledgements

This work is supported by the University of Minnesota and Tokyo Institute of Technology. S. Moore acknowledges funding from the NSF EAPSI program for US graduate students in Science and Engineering and Y. Du acknowledges funding from the China Scholarship Council. The authors thank T. Silva for providing a CO spectrum from his MW plasma source.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Bruggeman.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Y., Tamura, K., Moore, S. et al. CO(B 1Σ+A 1Π) Angstrom System for Gas Temperature Measurements in CO2 Containing Plasmas. Plasma Chem Plasma Process 37, 29–41 (2017). https://doi.org/10.1007/s11090-016-9759-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-016-9759-5

Keywords