Plasma Chemistry and Plasma Processing

, Volume 37, Issue 1, pp 5–28 | Cite as

Quantum Chemical Approach for Determining Degradation Pathways of Phenol by Electrical Discharge Plasmas

  • Xiangru Fan
  • John B. McLaughlin
  • Artem Melman
  • Selma Mededovic Thagard
Original Paper


This study uses density functional theory (DFT) simulations to predict the main pathways by which hydroxyl (OH) radicals oxidize phenol into monohydroxylated products during an electrical discharge directly in or contacting water. The calculated activation energies and reaction rate constants indicate that phenol ring H abstraction is less likely to occur than OH addition, which will be the fastest in the ortho and para positions. The chain propagation with molecular oxygen of such formed ortho and para radicals will result in the production of hydroquinone and catechol, which are, concurrently, the most likely products of phenol degradation by OH radicals. Electron transfer reactions between dihydroxycyclohexadienyl radicals and plasma oxidative species are another important reaction mechanism which may be contributing significantly to the formation of products. Good agreement between computed kinetic and experimental data demonstrates the feasibility of applying DFT to investigate chemical reaction mechanisms.


Density functional theory Electrical discharge Phenol Plasma 



One of the authors (S. Mededovic Thagard) would like to acknowledge the support of the National Science Foundation (CBET: #1336385).

Supplementary material

11090_2016_9758_MOESM1_ESM.pdf (893 kb)
Supplementary material 1 (PDF 893 kb)


  1. 1.
    Buxton GV, Greenstock CL, Helman WP, Ross AB (1988) Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals ·OH/·O in aqueous solution. J Phys Chem Ref Data 17(2):513–886CrossRefGoogle Scholar
  2. 2.
    Bielski B, Arudi RL, Sutherland MW (1983) A study of the reactivity of HO2/O2 with unsaturated fatty acids. J Biol Chem 258(8):4759–4761Google Scholar
  3. 3.
    Ren X, Sun Y, Fu X, Zhu L, Cui Z (2013) DFT comparison of the OH-initiated degradation mechanisms for five chlorophenoxy herbicides. J Mol Model 19(6):2249–2263CrossRefGoogle Scholar
  4. 4.
    Niu J, Lin H, Gong C, Sun X (2013) Theoretical and experimental insights into the electrochemical mineralization mechanism of perfluorooctanoic acid. Environ Sci Technol 47(24):14341–14349CrossRefGoogle Scholar
  5. 5.
    Zhang C, Sun T, Sun X (2011) Mechanism for OH-initiated degradation of 2,3,7,8-tetrachlorinated dibenzo-p-dioxins in the presence of O2 and NO/H2O. Environ Sci Technol 45(11):4756–4762CrossRefGoogle Scholar
  6. 6.
    Manoj P, Prasanthkumar K, Manoj V, Aravind UK, Manojkumar T, Aravindakumar C (2007) Oxidation of substituted triazines by sulfate radical anion (SO4· −) in aqueous medium: a laser flash photolysis and steady state radiolysis study. J Phys Org Chem 20(2):122–129CrossRefGoogle Scholar
  7. 7.
    Wang Y, Liu Y, Luo Y, Zhang W, Zhong R (2006) Theoretical study on the mechanisms of the reaction of peroxynitrous acid and phenol. Acta Phys Chem Sin 22(10):1266–1272CrossRefGoogle Scholar
  8. 8.
    Ramos B, Farah J, Teixeira A (2012) Estimating reaction constants by ab initio molecular modeling: a study on the oxidation of phenol to catechol and hydroquinone in advanced oxidation processes. Braz J Chem Eng 29(1):113–120CrossRefGoogle Scholar
  9. 9.
    Jayathilaka PB, Pathiraja GC, Bandara A, Subasinghe ND, Nanayakkara N (2014) Theoretical study of phenol and hydroxyl radical reaction mechanism in aqueous medium by the DFT/B3LYP/6-31 + G (d, p)/CPCM model. Can J Chem 92(9):809–813CrossRefGoogle Scholar
  10. 10.
    Xu C, Wang L (2013) Atmospheric oxidation mechanism of phenol initiated by OH radical. J Phys Chem A 117(11):2358–2364CrossRefGoogle Scholar
  11. 11.
    Carrier M, Guillard C, Besson M, Bordes C, Chermette H (2009) Photocatalytic degradation of diuron: experimental analyses and simulation of HO radical attacks by density functional theory calculations. J Phys Chem A 113(22):6365–6374CrossRefGoogle Scholar
  12. 12.
    Batiha M, Al-Muhtaseb AAH, Altarawneh M (2012) Theoretical study on the reaction of the phenoxy radical with O2, OH, and NO2. Int J Quantum Chem 112(3):848–857CrossRefGoogle Scholar
  13. 13.
    Huang Y, Huang Y, Tsai H, Chen H (2010) Degradation of phenol using low concentration of ferric ions by the photo-Fenton process. J Taiwan Inst Chem Eng 41(6):699–704CrossRefGoogle Scholar
  14. 14.
    Bossmann SH, Oliveros E, Göb S, Siegwart S, Dahlen EP, Payawan L, Straub M, Wörner M, Braun AM (1998) New evidence against hydroxyl radicals as reactive intermediates in the thermal and photochemically enhanced Fenton reactions. J Phys Chem A 102(28):5542–5550CrossRefGoogle Scholar
  15. 15.
    Bremner DH, Burgess AE, Houllemare D, Namkung K-C (2006) Phenol degradation using hydroxyl radicals generated from zero-valent iron and hydrogen peroxide. Appl Catal B 63(1):15–19CrossRefGoogle Scholar
  16. 16.
    Zazo J, Casas J, Mohedano A, Gilarranz M, Rodriguez J (2005) Chemical pathway and kinetics of phenol oxidation by Fenton’s reagent. Environ Sci Technol 39(23):9295–9302CrossRefGoogle Scholar
  17. 17.
    Kwon BG, Lee DS, Kang N, Yoon J (1999) Characteristics of p-chlorophenol oxidation by Fenton’s reagent. Water Res 33(9):2110–2118CrossRefGoogle Scholar
  18. 18.
    Mijangos F, Varona F, Villota N (2006) Changes in solution color during phenol oxidation by Fenton reagent. Environ Sci Technol 40(17):5538–5543CrossRefGoogle Scholar
  19. 19.
    Feng J, Hu X, Yue PL (2004) Degradation of salicylic acid by photo-assisted Fenton reaction using Fe ions on strongly acidic ion exchange resin as catalyst. Chem Eng J 100(1):159–165CrossRefGoogle Scholar
  20. 20.
    Grymonpré DR, Sharma AK, Finney WC, Locke BR (2001) The role of Fenton’s reaction in aqueous phase pulsed streamer corona reactors. Chem Eng J 82(1):189–207CrossRefGoogle Scholar
  21. 21.
    Bloss C, Wagner V, Jenkin M, Volkamer R, Bloss W, Lee J, Heard D, Wirtz K, Martin-Reviejo M, Rea G (2005) Development of a detailed chemical mechanism (MCMv3. 1) for the atmospheric oxidation of aromatic hydrocarbons. Atmos Chem Phys 5(3):641–664CrossRefGoogle Scholar
  22. 22.
    Atkinson R, Arey J (2003) Atmospheric degradation of volatile organic compounds. Chem Rev 103(12):4605–4638CrossRefGoogle Scholar
  23. 23.
    Atkinson R, Carter WP, Darnall KR, Winer AM, Pitts JN (1980) A smog chamber and modeling study of the gas phase NOx–air photooxidation of toluene and the cresols. Int J Chem Kinet 12(11):779–836CrossRefGoogle Scholar
  24. 24.
    Jenkin M, Saunders S, Wagner V, Pilling M (2003) Protocol for the development of the master chemical mechanism, MCM v3 (part B): tropospheric degradation of aromatic volatile organic compounds. Atmos Chem Phys 3(1):181–193CrossRefGoogle Scholar
  25. 25.
    Wagner V, Jenkin M, Saunders S, Stanton J, Wirtz K, Pilling M (2003) Modelling of the photooxidation of toluene: conceptual ideas for validating detailed mechanisms. Atmos Chem Phys 3(1):89–106CrossRefGoogle Scholar
  26. 26.
    Wang H, Li J, Quan X, Wu Y, Li G, Wang F (2007) Formation of hydrogen peroxide and degradation of phenol in synergistic system of pulsed corona discharge combined with TiO2 photocatalysis. J Hazard Mater 141(1):336–343CrossRefGoogle Scholar
  27. 27.
    Ding Z, Lu G, Greenfield P (2000) Role of the crystallite phase of TiO2 in heterogeneous photocatalysis for phenol oxidation in water. J Phys Chem. B 104(19):4815–4820CrossRefGoogle Scholar
  28. 28.
    Serpone N, Maruthamuthu P, Pichat P, Pelizzetti E, Hidaka H (1995) Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors. J Photochem Photobiol, A 85(3):247–255CrossRefGoogle Scholar
  29. 29.
    Doong R, Chen C, Maithreepala R, Chang S (2001) The influence of pH and cadmium sulfide on the photocatalytic degradation of 2-chlorophenol in titanium dioxide suspensions. Water Res 35(12):2873–2880CrossRefGoogle Scholar
  30. 30.
    Scheck CK, Frimmel FH (1995) Degradation of phenol and salicylic acid by ultraviolet radiation/hydrogen peroxide/oxygen. Water Res 29(10):2346–2352CrossRefGoogle Scholar
  31. 31.
    Chitose N, Ueta S, Seino S, Yamamoto TA (2003) Radiolysis of aqueous phenol solutions with nanoparticles. 1. Phenol degradation and TOC removal in solutions containing TiO2 induced by UV, γ-ray and electron beams. Chemosphere 50(8):1007–1013CrossRefGoogle Scholar
  32. 32.
    Nageswara Rao A, Sivasankar B, Sadasivam V (2009) Kinetic study on the photocatalytic degradation of salicylic acid using ZnO catalyst. J Hazard Mater 166(2):1357–1361CrossRefGoogle Scholar
  33. 33.
    Kubesch K, Zona R, Solar S, Gehringer P (2005) Degradation of catechol by ionizing radiation, ozone and the combined process ozone-electron-beam. Radiat Phys Chem 72(4):447–453CrossRefGoogle Scholar
  34. 34.
    Duarte C, Sampa M, Rela P, Oikawa H, Silveira C, Azevedo A (2002) Advanced oxidation process by electron-beam-irradiation-induced decomposition of pollutants in industrial effluents. Radiat Phys Chem 63(3):647–651CrossRefGoogle Scholar
  35. 35.
    Lin K, Cooper WJ, Nickelsen MG, Kurucz CN, Waite TD (1995) Decomposition of aqueous solutions of phenol using high energy electron beam irradiation—a large scale study. Appl Radiat Isot 46(12):1307–1316CrossRefGoogle Scholar
  36. 36.
    Li X, Cui Y, Feng Y, Xie Z, Gu J (2005) Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes. Water Res 39(10):1972–1981CrossRefGoogle Scholar
  37. 37.
    Papouchado L, Sandford R, Petrie G, Adams R (1975) Anodic oxidation pathways of phenolic compounds Part 2. Stepwise electron transfers and coupled hydroxylations. J Electroanal Chem Interfacial Electrochem 65(1):275–284CrossRefGoogle Scholar
  38. 38.
    Comninellis C, Nerini A (1995) Anodic oxidation of phenol in the presence of NaCl for wastewater treatment. J Appl Electrochem 25(1):23–28CrossRefGoogle Scholar
  39. 39.
    Comninellis C, Pulgarin C (1991) Anodic oxidation of phenol for waste water treatment. J Appl Electrochem 21(8):703–708CrossRefGoogle Scholar
  40. 40.
    Tezuka M, Iwasaki M (1998) Plasma induced degradation of chlorophenols in an aqueous solution. Thin Solid Films 316(1):123–127CrossRefGoogle Scholar
  41. 41.
    Yuan M, Watanabe T, Chang C (2010) DC water plasma at atmospheric pressure for the treatment of aqueous phenol. Environ Sci Technol 44(12):4710–4715CrossRefGoogle Scholar
  42. 42.
    Satoh K, Murakami M, Itoh H (2013) Pulsed-plasma degradation of phenol in an aqueous solution. In: 21st international symposium on plasma chemistry (ISPC 21), Cairns Convention Centre, Queensland, AustraliaGoogle Scholar
  43. 43.
    Liu Y, Jiang X (2005) Phenol degradation by a nonpulsed diaphragm glow discharge in an aqueous solution. Environ Sci Technol 39(21):8512–8517CrossRefGoogle Scholar
  44. 44.
    Hoeben W, Van Veldhuizen E, Rutgers W, Cramers C, Kroesen G (2000) The degradation of aqueous phenol solutions by pulsed positive corona discharges. Plasma Sources Sci Technol 9(3):361CrossRefGoogle Scholar
  45. 45.
    Hoeben W, Van Veldhuizen E, Rutgers W, Kroesen G (1999) Gas phase corona discharges for oxidation of phenol in an aqueous solution. J Phys D Appl Phys 32(24):L133CrossRefGoogle Scholar
  46. 46.
    Hoeben WFLM (2000) Pulsed corona-induced degradation of organic materials in water. Ph.D. Dissertation, Technische Universiteit Eindhoven, EindhovenGoogle Scholar
  47. 47.
    Lukes P, Locke BR (2005) Degradation of substituted phenols in a hybrid gas-liquid electrical discharge reactor. Ind Eng Chem Res 44(9):2921–2930CrossRefGoogle Scholar
  48. 48.
    Lukes P (2001) Water treatment by pulsed streamer corona discharge. Ph.D. Thesis, PragueGoogle Scholar
  49. 49.
    Li J, Sato M, Ohshima T (2007) Degradation of phenol in water using a gas–liquid phase pulsed discharge plasma reactor. Thin Solid Films 515(9):4283–4288CrossRefGoogle Scholar
  50. 50.
    Hayashi D, Hoeben W, Dooms G, Van Veldhuizen E, Rutgers W, Kroesen G (2000) Influence of gaseous atmosphere on corona-induced degradation of aqueous phenol. J Phys D Appl Phys 33(21):2769CrossRefGoogle Scholar
  51. 51.
    Sano N, Kawashima T, Fujikawa J, Fujimoto T, Kitai T, Kanki T, Toyoda A (2002) Decomposition of organic compounds in water by direct contact of gas corona discharge: influence of discharge conditions. Ind Eng Chem Res 41(24):5906–5911CrossRefGoogle Scholar
  52. 52.
    Sharma A, Locke B, Arce P, Finney W (1993) A preliminary study of pulsed streamer corona discharge for the degradation of phenol in aqueous solutions. Hazard Waste Hazard Mater 10(2):209–219CrossRefGoogle Scholar
  53. 53.
    Sugiarto AT, Sato M (2001) Pulsed plasma processing of organic compounds in aqueous solution. Thin Solid Films 386(2):295–299CrossRefGoogle Scholar
  54. 54.
    Tothova I, Lukes P, Clupek M, Babicky V, Janda V (2009) Removal of nonylphenol by pulsed corona discharge in water. In: 19th international symposium on plasma chemistry, BochumGoogle Scholar
  55. 55.
    Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G, Nakatsuji H, Caricato M, Li X (2009) Gaussian 09, Revision D. 01. Gaussian Inc., Wallingford, CTGoogle Scholar
  56. 56.
    Ditchfield R, Hehre W, Pople JA (1971) Self-consistent molecular-orbital methods. 9. extended gaussian-type basis for molecular-orbital studies of organic molecules. J Chem Phys 54(2):724–728CrossRefGoogle Scholar
  57. 57.
    Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120(1–3):215–241CrossRefGoogle Scholar
  58. 58.
    Tomasi J, Mennucci B, Cances E (1999) The IEF version of the PCM solvation method: an overview of a new method addressed to study molecular solutes at the QM ab initio level. J Mol Struct 464(1):211–226CrossRefGoogle Scholar
  59. 59.
    Neese F (2012) The ORCA program system. WIREs Comput Mol Sci 2(1):73–78CrossRefGoogle Scholar
  60. 60.
    Goerigk L, Grimme S (2011) A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. PCCP 13(14):6670–6688CrossRefGoogle Scholar
  61. 61.
    Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. PCCP 7(18):3297–3305CrossRefGoogle Scholar
  62. 62.
    Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113(18):6378–6396CrossRefGoogle Scholar
  63. 63.
    Goerigk L, Grimme S (2010) Efficient and accurate double-hybrid-meta-GGA density functionals· evaluation with the extended GMTKN30 database for general main group thermochemistry, kinetics, and noncovalent interactions. J Chem Theory Comput 7(2):291–309CrossRefGoogle Scholar
  64. 64.
    Marenich AV, Ho J, Coote ML, Cramer CJ, Truhlar DG (2014) Computational electrochemistry: prediction of liquid-phase reduction potentials. PCCP 16(29):15068–15106CrossRefGoogle Scholar
  65. 65.
    Li X, Frisch MJ (2006) Energy-represented direct inversion in the iterative subspace within a hybrid geometry optimization method. J Chem Theory Comput 2(3):835–839CrossRefGoogle Scholar
  66. 66.
    Peng C, Bernhard Schlegel H (1993) Combining synchronous transit and quasi-newton methods to find transition states. Isr J Chem 33(4):449–454CrossRefGoogle Scholar
  67. 67.
    Wigner EP (1997) Über das Überschreiten von Potentialschwellen bei chemischen Reaktionen. In: Wightman A (ed) Part I: physical chemistry. Part II: solid state physics, vol 4. Springer, Berlin, pp 96–109CrossRefGoogle Scholar
  68. 68.
    Wirz J (2010) Kinetic studies of keto-enol and other tautomeric equilibria by flash photolysis. Adv Phys Org Chem 44:325Google Scholar
  69. 69.
    Gao J, Liu Y, Yang W, Pu L, Yu J, Lu Q (2003) Oxidative degradation of phenol in aqueous electrolyte induced by plasma from a direct glow discharge. Plasma Sources Sci Technol 12(4):533CrossRefGoogle Scholar
  70. 70.
    Bordwell FG, Cheng J (1991) Substituent effects on the stabilities of phenoxyl radicals and the acidities of phenoxyl radical cations. J Am Chem Soc 113(5):1736–1743CrossRefGoogle Scholar
  71. 71.
    Knispel R, Koch R, Siese M, Zetzsch C (1990) Adduct formation of OH radicals with benzene, toluene, and phenol and consecutive reactions of the adducts with NOx and O2. Ber Bunsenges Phys Chem 94(11):1375–1379CrossRefGoogle Scholar
  72. 72.
    Sherrill CD (2005) Chapter 4: Bond breaking in quantum chemistry. In: Annual reports in computational chemistry, vol 1. Elsevier, Amsterdam, pp 45–56Google Scholar
  73. 73.
    McFerrin CA, Hall RW, Dellinger B (2008) Ab initio study of the formation and degradation reactions of semiquinone and phenoxyl radicals. J Mol Struct 848(1):16–23CrossRefGoogle Scholar
  74. 74.
    Hunter EP, Desrosiers MF, Simic MG (1989) The effect of oxygen, antioxidants, and superoxide radical on tyrosine phenoxyl radical dimerization. Free Radic Biol Med 6(6):581–585CrossRefGoogle Scholar
  75. 75.
    Weiss R (1970) The solubility of nitrogen, oxygen and argon in water and seawater. Deep-Sea Res Oceanogr Abstr 17:721–735CrossRefGoogle Scholar
  76. 76.
    Kanazawa S, Kawano H, Watanabe S, Furuki T, Akamine S, Ichiki R, Ohkubo T, Kocik M, Mizeraczyk J (2011) Observation of OH radicals produced by pulsed discharges on the surface of a liquid. Plasma Sources Sci Technol 20(3):034010CrossRefGoogle Scholar
  77. 77.
    Sahni M (2006) Analysis of the chemical reactions in pulsed streamer discharges: an experimental study. Ph.D. Dissertation, Florida State University, TallahasseeGoogle Scholar
  78. 78.
    Hu H, Dibble TS (2013) Quantum chemistry, reaction kinetics, and tunneling effects in the reaction of methoxy radicals with O2. J Phys Chem A 117(51):14230–14242CrossRefGoogle Scholar
  79. 79.
    Nguyen HMT, Peeters J, Nguyen MT, Chandra AK (2004) Use of DFT-based reactivity descriptors for rationalizing radical reactions: a critical analysis. J Phys Chem A 108(3):484–489CrossRefGoogle Scholar
  80. 80.
    Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592CrossRefGoogle Scholar
  81. 81.
    DeMatteo MP, Poole JS, Shi X, Sachdeva R, Hatcher PG, Hadad CM, Platz MS (2005) On the electrophilicity of hydroxyl radical: a laser flash photolysis and computational study. J Am Chem Soc 127(19):7094–7109CrossRefGoogle Scholar
  82. 82.
    Bachrach SM (2014) Computational organic chemistry. Wiley, New YorkCrossRefGoogle Scholar
  83. 83.
    Sawaki Y, Foote CS (1983) Mechanism of carbon-carbon cleavage of cyclic 1, 2-diketones with alkaline hydrogen peroxide. The acyclic mechanism and its application to the basic autoxidation of pyrogallol. J Am Chem Soc 105(15):5035–5040CrossRefGoogle Scholar
  84. 84.
    Wheast R (1984) Handbook of chemistry and physics. CRC Press, Boca RatonGoogle Scholar
  85. 85.
    Buettner GR (1993) The pecking order of free radicals and antioxidants: lipid peroxidation, α-tocopherol, and ascorbate. Arch Biochem Biophys 300(2):535–543CrossRefGoogle Scholar
  86. 86.
    Atkins P (1998) Physical Chemistry, 6th edn. Oxford University Press, OxfordGoogle Scholar
  87. 87.
    Marcus RA (1956) On the theory of oxidation-reduction reactions involving electron transfer. I J Chem Phys 24(5):966–978CrossRefGoogle Scholar
  88. 88.
    Raghavan N, Steenken S (1980) Electrophilic reaction of the hydroxyl radical with phenol. Determination of the distribution of isomeric dihydroxycyclohexadienyl radicals. J Am Chem Soc 102(10):3495–3499CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Xiangru Fan
    • 1
  • John B. McLaughlin
    • 1
  • Artem Melman
    • 2
  • Selma Mededovic Thagard
    • 1
  1. 1.Plasma Research Laboratory, Department of Chemical and Biomolecular EngineeringClarkson UniversityPotsdamUSA
  2. 2.Department of ChemistryClarkson UniversityPotsdamUSA

Personalised recommendations