Skip to main content

Nano-Architecture of Facetted NiFe2O4/(Ni,Fe)O Particles Produced by Induction Plasma


Facetted nickel ferrite (NiFe2O4) and bunsenite [(Ni,Fe)O] nanocrystals were grown from the decomposition of iron and nickel nitrate precursors using an inductively coupled plasma reactor. The full range of the two-phase region of the Fe2O3–NiO pseudo-equilibrium phase diagram was investigated by producing nanopowders with bulk Ni/(Ni + Fe) ratios of 0.33, 0.4, 0.5, 0.75 and 1.0. A Ni-poor [Ni/(Ni + Fe) ≤ 0.5] precursor solution produced truncated octahedron nanocrystals, whereas nanocubes were obtained at higher ratios [Ni/(Ni + Fe) ≈ 1]. In both cases, it is shown that the nanocrystals adopt a morphology close to the Wulff shape of the crystalline system (spinel and NaCl, respectively). As the bulk Ni/(Ni + Fe) ratio increases from 0.33 (the stoechiometric composition of nickel ferrite), bunsenite is epitaxially segregated on the {110} and {111} facets of nickel ferrite, while leaving the NiFe2O4 {100} facets exposed. A precursor solution at a Ni/(Ni + Fe) ratio of 0.75 gave an (Ni,Fe)O-rich nanopowder with a random and irregular interconnected morphology. The structure of these nanocrystals can be understood in terms of their thermal history in the plasma reactor. These results highlights the possibility of producing organized multi-phased nanomaterials of binary systems having two phases stable at high temperatures, using a method known to be easily scalable.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Dolbec R, Boulos M, Bouchard E, Kuppuswamy N (2013) Nanopowders synthesis at industrial-scale production using the inductively-coupled plasma technology. In: International conference on advanced nanomaterials and emerging engineering technologies, pp 21–24

  2. 2.

    Guo J, Fab X, Dolbec R et al (2010) Development of nanopowder synthesis using induction plasma. Plasma Sci Technol 12:188–199. doi:10.1088/1009-0630/12/2/12

    CAS  Article  Google Scholar 

  3. 3.

    Boulos MI, Fauchais P, Pfender E (1994) Thermal plasmas: fundamentals and applications, vol 1. doi:10.1007/978-1-4899-1337-1

  4. 4.

    Boulos M, Pfender E (1996) Materials processing with thermal plasmas. MRS Bull 21:65–68

    CAS  Article  Google Scholar 

  5. 5.

    Alloyeau D, Ricolleau C, Langlois C et al (2010) Flash laser annealing for controlling size and shape of magnetic alloy nanoparticles. Beilstein J Nanotechnol 1:55–59. doi:10.3762/bjnano.1.7

    CAS  Article  Google Scholar 

  6. 6.

    Bosbach J, Martin D, Stietz F et al (1999) Laser-based method for fabricating monodisperse metallic nanoparticles. Appl Phys Lett 74:2605–2607. doi:10.1063/1.123911

    CAS  Article  Google Scholar 

  7. 7.

    Takami A, Kurita H, Koda S (1999) Laser-induced size reduction of noble metal particles. J Phys Chem B 103:1226–1232. doi:10.1021/jp983503o

    CAS  Article  Google Scholar 

  8. 8.

    Chaudhuri RG, Paria S (2012) Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev 112:2373–2433

    Article  Google Scholar 

  9. 9.

    Rhamdhani MA, Hayes PC, Jak E (2008) Subsolidus phase equilibria of the Fe–Ni–O system. Metall Mater Trans B 39B:690–701. doi:10.1007/s11663-008-9174-2

    CAS  Article  Google Scholar 

  10. 10.

    Bastien S, Braidy N (2013) Controlled synthesis of nickel ferrite nanocrystals with tunable properties using a novel induction thermal plasma method. J Appl Phys 114:214304. doi:10.1063/1.4837577

    Article  Google Scholar 

  11. 11.

    Sickafus KE, Wills JM, Grimes NW (1999) Structure of spinel. J Am Ceram Soc 82:3279–3292. doi:10.1111/j.1151-2916.1999.tb02241.x

    CAS  Article  Google Scholar 

  12. 12.

    Roosen AR, McCormack RP, Carter WC (1998) Wulffman: a tool for the calculation and display of crystal shapes. Comput Mater Sci 11:16–26. doi:10.1016/S0927-0256(97)00167-5

    Article  Google Scholar 

  13. 13.

    Rahmane M, Soucy G, Boulos MI (1994) Mass transfer in induction plasma reactors. Int J Heat Mass Transf 37:2035–2046. doi:10.1016/0017-9310(94)90305-0

    CAS  Article  Google Scholar 

  14. 14.

    Zasada F, Grybos J, Piskorz W et al (2014) Surface structure and morphology of M[CoM′]O4 (M = Mg, Zn, Fe, Co and M′ = Ni, Al, Mn, Co) spinel nanocrystals—DFT + U and TEM screening investigations. J Phys Chem C 118:19085–19097

    CAS  Article  Google Scholar 

  15. 15.

    Summerfelt SR, Carter CB (1992) Dissolution of NiFe204 particles in a NiO matrix. Acta Met Mater 40:2799–2804

    CAS  Article  Google Scholar 

  16. 16.

    Tasker PW, Duffy DM (1984) The structure and properties of the stepped surfaces of MgO and NiO. Surf Sci 137:91–102

    CAS  Article  Google Scholar 

Download references


The authors would like to extend their most sincere thanks to François Gitzhofer and Kossi E. Béré for their technical help, Federico Rosei for providing valuable insight on this manuscript, as well as NSERC, CFI, FRQNT, the Plasma-Québec network and the Canada Research Chair program for funding this research.

Author information



Corresponding author

Correspondence to Nadi Braidy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 566 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bastien, S., Ricolleau, C. & Braidy, N. Nano-Architecture of Facetted NiFe2O4/(Ni,Fe)O Particles Produced by Induction Plasma. Plasma Chem Plasma Process 36, 1349–1362 (2016).

Download citation


  • Induction plasma
  • Multi-phased
  • Nanoparticles
  • TEM