Plasma Chemistry and Plasma Processing

, Volume 36, Issue 4, pp 941–972 | Cite as

Synthesis of Silicon Nanoparticles in Nonthermal Capacitively-Coupled Flowing Plasmas: Processes and Transport

  • Romain Le Picard
  • Aram H. Markosyan
  • David H. Porter
  • Steven L. Girshick
  • Mark J. Kushner
Original Paper


Control of the size and material properties of silicon nanoparticles plays a critical role in optimizing applications using those nanoparticles, such as photovoltaics and biomedical devices. While synthesis of silicon nanoparticles in low temperature plasmas has many attractive features, the basic mechanisms leading to formation of nanoparticles in these plasmas are poorly understood. A two-dimensional numerical model for synthesis of silicon nanoparticles (<5 nm in diameter) in radio frequency (RF) discharges was developed and used to investigate mechanisms for particle growth for Ar/He/SiH4 gas mixtures. Algorithms for the kinetics of nanoparticle formation were self-consistently embedded into a plasma hydrodynamics simulation to account for nucleation, growth, charging, and transport of nanoparticles. We found that with RF excitation in narrow tubes at pressures of a few Torr, the electric field does not fully confine charged nanoparticles in the axial direction, which then results in a finite residence time of particles in the plasma. We found that because of the high neutral nanoparticle density, coagulation plays a significant role in growth. The model predicts the possibility of synthesizing crystalline silicon nanoparticles under these conditions. Trends in the growth of nanoparticles as a function of power are discussed.


Silicon nanoparticle synthesis Plasma modeling Nanoparticle charging 



We thank P. Seal and D. G. Truhlar for providing their calculations of the Gibbs free energy changes reported in Table 3. This work was supported by the U.S. National Science Foundation (CHE-124752) and the U.S. Dept. of Energy Office of Fusion Energy Science (DE-SC0001939).


  1. 1.
    Moore D, Krishnamurthy S, Chao Y, Wang Q, Brabazon D, McNally PJ (2011) Characteristics of silicon nanocrystals for photovoltaic applications. Phys Status Solidi 208(3):604–607CrossRefGoogle Scholar
  2. 2.
    Weis S, Kormer R, Jank MPM, Lemberger M, Otto M, Ryssel H, Peukert W, Frey L (2011) Conduction mechanisms and environmental sensitivity of solution-processed silicon nanoparticle layers for thin-film transistors. Small 7(20):2853–2857CrossRefGoogle Scholar
  3. 3.
    Fujioka K, Hiruoka M, Sato K, Manabe N, Miyasaka R, Hanada S, Hoshino A, Tilley RD, Manome Y, Hirakuri K, Yamamoto K (2008) Luminescent passive-oxidized silicon quantum dots as biological staining labels and their cytotoxicity effects at high concentration. Nanotechnology 19:1–7CrossRefGoogle Scholar
  4. 4.
    Shirahata N (2011) Colloidal Si nanocrystals: a controlled organic–inorganic interface and its implications of color-tuning and chemical design toward sophisticated architectures. Phys Chem Chem Phys 13:7284–7294CrossRefGoogle Scholar
  5. 5.
    Gao X, Cui Y, Levenson RM, Chung LWK, Nie S (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22(8):969–976CrossRefGoogle Scholar
  6. 6.
    Astruc D, Lu F, Aranzaes JR (2005) Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angew Chem Int Ed 44(48):7852–7872CrossRefGoogle Scholar
  7. 7.
    Doğan I, van de Sanden MCM (2015) Gas-phase plasma synthesis of free-standing silicon nanoparticles for future energy applications. Plasma Process Polym 13(1):19–53Google Scholar
  8. 8.
    Littau K, Szajowski P (1993) A luminescent silicon nanocrystal colloid via a high-temperature aerosol reaction. J Phys Chem 97:1224–1230CrossRefGoogle Scholar
  9. 9.
    Huisken F, Amans D, Ledoux G, Hofmeister H, Cichos F, Martin J (2003) Nanostructuration with visible-light-emitting silicon nanocrystals. New J Phys 5(1):10CrossRefGoogle Scholar
  10. 10.
    Kortshagen U (2009) Nonthermal plasma synthesis of semiconductor nanocrystals. J Phys D Appl Phys 42(11):113001CrossRefGoogle Scholar
  11. 11.
    Mangolini L, Thimsen E, Kortshagen U (2005) High-yield plasma synthesis of luminescent silicon nanocrystals. Nano Lett 5(4):655–659CrossRefGoogle Scholar
  12. 12.
    Sankaran RM, Holunga D, Flagan RC, Giapis KP (2005) Synthesis of blue luminescent Si nanoparticles using atmospheric-pressure microdischarges. Nano Lett 5(3):537–541CrossRefGoogle Scholar
  13. 13.
    Lopez T, Mangolini L (2014) On the nucleation and crystallization of nanoparticles in continuous-flow nonthermal plasma reactors. J Vac Sci Technol B Nanotechnol Microelectron Mater Process Meas Phenom 32(6):061802Google Scholar
  14. 14.
    Askari S, Levchenko I, Ostrikov K, Maguire P, Mariotti D (2014) Crystalline Si nanoparticles below crystallization threshold: effects of collisional heating in non-thermal atmospheric-pressure microplasmas. Appl Phys Lett 104(16):163103CrossRefGoogle Scholar
  15. 15.
    Hirasawa M, Orii T, Seto T (2006) Size-dependent crystallization of Si nanoparticles. Appl Phys Lett 88(9):2004–2007CrossRefGoogle Scholar
  16. 16.
    Mangolini L, Kortshagen U (2009) Selective nanoparticle heating: another form of nonequilibrium in dusty plasmas. Phys Rev E 79(2):026405CrossRefGoogle Scholar
  17. 17.
    Boufendi L, Bouchoule A (1994) Particle nucleation and growth in a low-pressure argon-silane discharge. Plasma Sources Sci Technol 3(3):262–267CrossRefGoogle Scholar
  18. 18.
    Boufendi L (1996) Electrical characterization and modeling of a dust forming plasma in a radio frequency discharge. J Vac Sci Technol A Vac Surf Film 14(2):572CrossRefGoogle Scholar
  19. 19.
    Bilik N, Anthony R, Merritt BA, Aydil ES, Kortshagen UR (2015) Langmuir probe measurements of electron energy probability functions in dusty plasmas. J Phys D Appl Phys 48(10):105204CrossRefGoogle Scholar
  20. 20.
    Denysenko I, Yu MY, Ostrikov K, Azarenkov NA, Stenflo L (2004) A kinetic model for an argon plasma containing dust grains. Phys Plasmas 11(11):4959CrossRefGoogle Scholar
  21. 21.
    Denysenko I, Yu MY, Ostrikov K, Smolyakov A (2004) Spatially averaged model of complex-plasma discharge with self-consistent electron energy distribution. Phys Rev E 70(4):046403CrossRefGoogle Scholar
  22. 22.
    Denysenko I, Ostrikov K, Yu MY, Azarenkov NA (2006) Behavior of the electron temperature in nonuniform complex plasmas. Phys Rev E 74(3):036402CrossRefGoogle Scholar
  23. 23.
    Bhandarkar UV, Swihart MT, Girshick SL, Kortshagen UR (2000) Modelling of silicon hydride clustering in a low-pressure silane plasma. J Phys D Appl Phys 33(21):2731–2746CrossRefGoogle Scholar
  24. 24.
    Bhandarkar U, Kortshagen U, Girshick SL (2003) Numerical study of the effect of gas temperature on the time for onset of particle nucleation in argon–silane low-pressure plasmas. J Phys D Appl Phys 36(12):1399–1408CrossRefGoogle Scholar
  25. 25.
    Bao JL, Seal P, Truhlar DG (2015) Nanodusty plasma chemistry: a mechanistic and variational transition state theory study of the initial steps of silyl anion–silane and silylene anion–silane polymerization reactions. Phys Chem Chem Phys 17(24):15928–15935CrossRefGoogle Scholar
  26. 26.
    Matsoukas T, Russell M (1995) Particle charging in low-pressure plasmas. J Appl Phys 77(1995):4285–4292CrossRefGoogle Scholar
  27. 27.
    Cui C, Goree J (1994) Fluctuations of the charge on a dust grain in a plasma. IEEE Trans Plasma Sci 22(2):151–158CrossRefGoogle Scholar
  28. 28.
    Le Picard R, Girshick SL (2016) The effect of single-particle charge limits on charge distributions in dusty plasmas. J Phys D Appl Phys 49:095201CrossRefGoogle Scholar
  29. 29.
    Warthesen SJ, Girshick SL (2007) Numerical simulation of the spatiotemporal evolution of a nanoparticle–plasma system. Plasma Chem Plasma Process 27(3):292–310CrossRefGoogle Scholar
  30. 30.
    Agarwal P, Girshick SL (2012) Sectional modeling of nanoparticle size and charge distributions in dusty plasmas. Plasma Sources Sci Technol 21(5):055023CrossRefGoogle Scholar
  31. 31.
    Ravi L, Girshick SL (2009) Coagulation of nanoparticles in a plasma. Phys Rev E 79(2):026408CrossRefGoogle Scholar
  32. 32.
    Gresback R, Holman Z, Kortshagen U (2007) Nonthermal plasma synthesis of size-controlled, monodisperse, freestanding germanium nanocrystals. Appl Phys Lett 91(9):093119CrossRefGoogle Scholar
  33. 33.
    Kramer NJ, Schramke KS, Kortshagen UR (2015) Plasmonic properties of silicon nanocrystals doped with boron and phosphorus. Nano Lett 15(8):5597–5603CrossRefGoogle Scholar
  34. 34.
    Kushner MJ (2009) Hybrid modelling of low temperature plasmas for fundamental investigations and equipment design. J Phys D Appl Phys 42(19):194013CrossRefGoogle Scholar
  35. 35.
    Gelbard F, Tambour Y, Seinfeld JH (1980) Sectional representations for simulating aerosol dynamics. J Colloid Interface Sci 76(2):541–556CrossRefGoogle Scholar
  36. 36.
    Wu C-Y, Biswas P (1998) Study of numerical diffusion in a discrete-sectional model and its application to aerosol dynamics simulation. Aerosol Sci Technol 29(5):359–378CrossRefGoogle Scholar
  37. 37.
    Draine BT, Sutin B (1987) Collisional charging of interstellar grains. Astrophys J 320:803–817CrossRefGoogle Scholar
  38. 38.
    Barnes MS, Keller JH, Forster JC, O’Neill JA, Coultas DK (1992) Transport of dust particles in glow-discharge plasmas. Phys Rev Lett 68(3):313CrossRefGoogle Scholar
  39. 39.
    Huang DD, Seinfeld JH, Okuyama K (1991) Image potential between a charged particle and an uncharged particle in aerosol coagulation—enhancement in all size regimes and interplay with van der Waals forces. J Colloid Interface Sci 141(1):191–198CrossRefGoogle Scholar
  40. 40.
    Perrin J, Schmitt JP, De Rosny G, Drevillon B, Huc J, Lloret A (1982) Dissociation cross sections of silane and disilane by electron impact. Chem Phys 73:383–394CrossRefGoogle Scholar
  41. 41.
    Buss RJ, Ho P, Weber ME (1993) Laser studies of the reactivity of SiO with the surface of a depositing film. Plasma Chem Plasma Process 13(1):61–76CrossRefGoogle Scholar
  42. 42.
    Hawa T, Zachariah MR (2005) Coalescence kinetics of bare and hydrogen-coated silicon nanoparticles: a molecular dynamics study. Phys Rev B Condens Matter Mater Phys 71(16):1–12CrossRefGoogle Scholar
  43. 43.
    Allen JE (1992) Probe theory—the orbital motion approach. Phys Scr 45(5):497–503CrossRefGoogle Scholar
  44. 44.
    Dagum L, Menon R (1998) OpenMP: an industry-standard API for shared-memory programming. Comput Sci Eng IEEE 5(1):46–55CrossRefGoogle Scholar
  45. 45.
    Seal P, Truhlar DG (2014) Large entropic effects on the thermochemistry of silicon nanodusty plasma constituents. J Am Chem Soc 136(7):2786–2799CrossRefGoogle Scholar
  46. 46.
    Yavneh I (1996) On red-black SOR smoothing in multigrid. SIAM J Sci Comput 17(1):180–192CrossRefGoogle Scholar
  47. 47.
    LaRowe RP, Ellis CS (1991) Page placement policies for NUMA multiprocessors. J Parallel Distrib Comput 11(2):112–129CrossRefGoogle Scholar
  48. 48.
    Kramer NJ, Anthony RJ, Mamunuru M, Aydil ES, Kortshagen UR (2014) Plasma-induced crystallization of silicon nanoparticles. J Phys D Appl Phys 47(7):075202CrossRefGoogle Scholar
  49. 49.
    Matsoukas T (1994) Charge distributions in bipolar particle charging. J Aerosol Sci 25(4):599–609CrossRefGoogle Scholar
  50. 50.
    Tawara H, Itikawa Y, Nishimura H, Yoshino M (1990) Cross sections and related data for electron collisions with hydrogen molecules and molecular ions. J Phys Chem Ref Data 19(3):617–633CrossRefGoogle Scholar
  51. 51.
    Agarwal P, Girshick SL (2014) Numerical modeling of the spatiotemporal behavior of an RF argon-silane plasma with dust particle nucleation and growth. Plasma Chem Plasma Process 34(3):489–503CrossRefGoogle Scholar
  52. 52.
    Maurer HR, Kersten H (2011) On the heating of nano- and microparticles in process plasmas. J Phys D Appl Phys 44(17):174029CrossRefGoogle Scholar
  53. 53.
    Forero-Martinez NC, Le Thi H-L, Vach H (2014) Self-assembly in silane/hydrogen plasmas: from silicon atoms to aromatic silicon nanocrystals. Plasma Chem Plasma Proc 34:535–543CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Romain Le Picard
    • 1
  • Aram H. Markosyan
    • 2
  • David H. Porter
    • 3
  • Steven L. Girshick
    • 1
  • Mark J. Kushner
    • 2
  1. 1.Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisUSA
  2. 2.Electrical Engineering and Computer Science DepartmentUniversity of MichiganAnn ArborUSA
  3. 3.Minnesota Supercomputing InstituteUniversity of MinnesotaMinneapolisUSA

Personalised recommendations