Skip to main content
Log in

PMMA Surface Functionalization Using Atmospheric Pressure Plasma for Development of Plasmonically Active Polymer Optical Fiber Probes

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

In this paper, we demonstrate the development of plasmonically active PMMA optical fiber probes by the attachment of gold nanoparticles to the probe surface functionalized by means of flowing post-discharges from dielectric barrier discharge (DBD) plasmas for the first time. Polymer optical fiber (POF) probes (U shape to improve absorbance sensitivity) were subjected to reactive gas atmospheres in the post-discharge region of a coaxial DBD plasma reactor run at atmospheric pressure in different gases (Ar, Ar + 10 % O2, O2, N2, N2 + 0.5 % H2). Plasma treatments in Ar or N2 gave rise to water-stable electrophilic functional groups on PMMA surface, whereas the amine groups generated by N2-containing plasmas were not stable. Subsequently, PMMA surfaces were treated with hexamethylene diamine (HMDA) to obtain stable amine groups through the reaction of electrophilic groups. Gold nanoflowers (AuNF, 37 nm, peak 570 nm) binding to the amine functionalized fiber probes was monitored in real-time by recording the optical absorbance changes at 570 nm with the help of a UV–vis spectrometer. Absorbance response from Ar or N2 plasma treated probes are 100 and 60 times, respectively, that of untreated control probes. A 25 fold improvement in absorbance response was obtained for Ar plasma treated POF in comparison with only HMDA treated POF. The shelf life of the hence fabricated plasmonically active probes was found to be at least 3 months. In addition, plasmonic activity of U-bent fiber probes treated in Ar plasma is better than the conventional wet-chemical activation by environmentally hazardous acid pre-treatment approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hasan M, Bethell D, Brust M (2002) The fate of sulfur-bound hydrogen on formation of self-assembled thiol monolayers on gold: 1H NMR spectroscopic evidence from solutions of gold clusters. J Am Chem Soc 124:1132–1133

    Article  CAS  Google Scholar 

  2. Kumar A, Mandal S, Selvakannan PR et al (2003) Investigation into the interaction between surface-bound alkylamines and gold nanoparticles. Langmuir 19:6277–6282

    Article  CAS  Google Scholar 

  3. Khijwania SK, Gupta BD (2000) Maximum achievable sensitivity of the fiber optic evanescent field absorption sensor based on the U-shaped probe. Opt Commun 175:135–137

    Article  CAS  Google Scholar 

  4. Gupta BD, Dodeja H (1996) Fibre-optic evanescent field absorption sensor based on a U-shaped probe. Opt Quantum Electron 28:1629–1639

    Article  CAS  Google Scholar 

  5. Sai VVR, Kundu T, Mukherji S (2009) Novel U-bent fiber optic probe for localized surface plasmon resonance based biosensor. Biosens Bioelectron 24:2804–2809

    Article  CAS  Google Scholar 

  6. Goddard JM, Hotchkiss JH (2007) Polymer surface modification for the attachment of bioactive compounds. Prog Polym Sci 32:698–725

    Article  CAS  Google Scholar 

  7. Henry AC, Tutt TJ, Galloway M et al (2000) Surface modification of poly(methyl methacrylate) used in the fabrication of microanalytical devices. Anal Chem 72:5331–5337

    Article  CAS  Google Scholar 

  8. Patel S, Thakar RG, Wong J et al (2006) Control of cell adhesion on poly(methyl methacrylate). Biomaterials 27:2890–2897

    Article  CAS  Google Scholar 

  9. Fixe F, Dufva M, Telleman P, Christensen CBV (2004) Functionalization of poly(methyl methacrylate) (PMMA) as a substrate for DNA microarrays. Nucleic Acids Res 32:1–8

    Article  Google Scholar 

  10. Shah JJ, Geist J, Locascio LE et al (2006) Surface modification of poly(methyl methacrylate) for improved adsorption of wall coating polymers for microchip electrophoresis. Electrophoresis 27:3788–3796

    Article  CAS  Google Scholar 

  11. Gröning P, Collaud M, Dietler G, Schlapbach L (1994) Plasma modification of polymethylmethacrylate and polyethyleneterephthalate surfaces. J Appl Phys 76:887

    Article  Google Scholar 

  12. Homola T, Matoušek J, Hergelová B et al (2012) Activation of poly(methyl methacrylate) surfaces by atmospheric pressure plasma. Polym Degrad Stab 97:886–892

    Article  CAS  Google Scholar 

  13. Cui L, Ranade AN, Matos MA et al (2013) Improved adhesion of dense silica coatings on polymers by atmospheric plasma pretreatment. ACS Appl Mater Interfaces 5:8495–8504

    Article  CAS  Google Scholar 

  14. Riau AK, Mondal D, Yam GHF et al (2015) Surface modification of PMMA to improve adhesion to corneal substitutes in a synthetic core–skirt keratoprosthesis. ACS Appl Mater Interfaces 7:21690–21702

    Article  CAS  Google Scholar 

  15. Liu C, Brown NMD, Meenan BJ (2006) Dielectric barrier discharge (DBD) processing of PMMA surface: Optimization of operational parameters. Surf Coat Technol 201:2341–2350

    Article  CAS  Google Scholar 

  16. Hegemann D, Brunner H, Oehr C (2003) Plasma treatment of polymers for surface and adhesion improvement. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 208:281–286

    Article  CAS  Google Scholar 

  17. Vesel A, Mozetic M (2012) Surface modification and ageing of PMMA polymer by oxygen plasma treatment. Vacuum 86:634–637

    Article  CAS  Google Scholar 

  18. Long TM, Prakash S, Shannon MA, Moore JS (2006) Water-vapor plasma-based surface activation for trichlorosilane modification of PMMA. Langmuir 22:4104–4109

    Article  CAS  Google Scholar 

  19. Wagner H-E, Brandenburg R, Kozlov KV et al (2003) The barrier discharge: basic properties and applications to surface treatment. Vacuum 71:417–436

    Article  CAS  Google Scholar 

  20. Reznickova A, Kolska Z, Siegel J, Svorcik V (2012) Grafting of gold nanoparticles and nanorods on plasma-treated polymers by thiols. J Mater Sci 47:6297–6304

    Article  CAS  Google Scholar 

  21. Ferreira J, Teixeira FS, Zanatta AR et al (2012) Tailored SERS substrates obtained with cathodic arc plasma ion implantation of gold nanoparticles into a polymer matrix. Phys Chem Chem Phys 14:2050–2055

    Article  CAS  Google Scholar 

  22. Klages C-P, Hinze A, Willich P, Thomas M (2010) Atmospheric-pressure plasma amination of polymer surfaces. J Adhes Sci Technol 24:1167–1180

    Article  CAS  Google Scholar 

  23. Fang Z, Liu Y, Liu K et al (2012) Surface modifications of polymethylmethacrylate films using atmospheric pressure air dielectric barrier discharge plasma. Vacuum 86:1305–1312

    Article  CAS  Google Scholar 

  24. Zhang C, Zhou Y, Shao T et al (2014) Hydrophobic treatment on polymethylmethacrylate surface by nanosecond-pulse DBDs in CF4 at atmospheric pressure. Appl Surf Sci 311:468–477

    Article  CAS  Google Scholar 

  25. Rezaei F, Shokri B, Sharifian M (2016) Atmospheric-pressure DBD plasma-assisted surface modification of poly(methyl methacrylate): a study on cell growth/proliferation and antibacterial properties. Appl Surf Sci 360:641–651. doi:10.1016/j.apsusc.2015.08.069

    Article  CAS  Google Scholar 

  26. Beake BD, Ling JSG, Leggett GJ (1998) Scanning force microscopy investigation of poly(ethylene terephthalate) modified by argon plasma treatment. J Mater Chem 8:1735–1742

    Article  CAS  Google Scholar 

  27. Han S, Koh SK, Yoon KH (1999) Induced surface reactions and chemical states: a kiloelectronvolt ion irradiation on simple linear chain structure polymers in an O2 environment. J Electrochem Soc 146:4327–4333

    Article  CAS  Google Scholar 

  28. Cui N-Y, Brown NMD (2002) Modification of the surface properties of a polypropylene (PP) film using an air dielectric barrier discharge plasma. Appl Surf Sci 189:31–38

    Article  CAS  Google Scholar 

  29. López-Santos C, Yubero F, Cotrino J, González-Elipe AR (2010) Surface functionalization, oxygen depth profiles, and wetting behavior of PET treated with different nitrogen plasmas. ACS Appl Mater Interfaces 2:980–990

    Article  Google Scholar 

  30. Petersen J, Fouquet T, Michel M et al (2012) Enhanced adhesion over aluminum solid substrates by controlled atmospheric plasma deposition of amine-rich primers. ACS Appl Mater Interfaces 4:1072–1079

    Article  CAS  Google Scholar 

  31. Shao T, Zhou Y, Zhang C et al (2015) Surface modification of poly(methyl methacrylate) using atmospheric pressure argon plasma jets to improve surface flashover performance in vacuum. IEEE Trans Dielectr Electr Insul 22:1747–1754

    Article  CAS  Google Scholar 

  32. Jokinen V, Suvanto P, Franssila S (2012) Oxygen and nitrogen plasma hydrophilization and hydrophobic recovery of polymers. Biomicrofluidics 6:016501–1–016501–10

    Article  Google Scholar 

  33. Xie J, Zhang Q, Lee JY, Wang DIC (2008) The synthesis of SERS-active gold nanoflower tags for in vivo applications. ACS Nano 2:2473–2480

    Article  CAS  Google Scholar 

  34. Merchant DF, Scully PJ, Schmitt NF (1999) Chemical tapering of polymer optical fibre. Sens Actuators A Phys 76:365–371

    Article  CAS  Google Scholar 

  35. Socrates G (2004) Infrared and Raman characteristic group frequencies: Tables and charts, 3rd edn. Wiley, New York

    Google Scholar 

  36. Klages CP, Grishin A (2008) Plasma amination of low-density polyethylene by DBD afterglows at atmospheric pressure. Plasma Process Polym 5:368–376

    Article  CAS  Google Scholar 

  37. Khosravi Z (2016) Thesis, Technische Universität Braunschweig, in preparation

  38. Omastová M, Pavlinec J, Pionteck J et al (1998) Chemical preparation and characterization of conductive poly(methyl methacrylate)/polypyrrole composites. Polymer (Guildf) 39:6559–6566

    Article  Google Scholar 

  39. Gonzalez E II, Hicks RF (2010) Surface analysis of polymers treated by remote atmospheric pressure plasma. Langmuir 26:3710–3719

    Article  CAS  Google Scholar 

  40. Yuan H, Killelea DR, Tepavcevic S, et al. (2011) Interfacial chemistry of poly(methyl methacrylate) arising from exposure to vacuum-ultraviolet light and atomic oxygen. J Phys Chem A 115:3736–3745

    Article  CAS  Google Scholar 

  41. Zhang J, Lindholm NF, Brunsvold AL et al (2009) Erosion of FEP Teflon and PMMA by VUV radiation and hyperthermal O or Ar atoms. ACS Appl Mater Interfaces 1:653–660

    Article  CAS  Google Scholar 

  42. Khosravi Z, Klages C-P (2014) Nucleophilic derivatization of polyethylene surfaces treated in ambient-pressure N2–H2 DBD post discharges. Plasma Chem Plasma Process 34:661–669

    Article  CAS  Google Scholar 

  43. Ozgen O, Hasirci N (2014) Modification of PMMA surfaces with oxygen, nitrogen and argon plasma. J Biomater Tissue Eng 4:479–487

    Article  CAS  Google Scholar 

  44. Klages C-P, Hinze A, Khosravi Z (2013) Nitrogen plasma modification and chemical derivatization of polyethylene surfaces—an in situ study using FTIR-ATR spectroscopy. Plasma Process Polym 10:948–958

    Article  CAS  Google Scholar 

  45. Tsang W, Hampson RF (1986) Chemical kinetic data base for combustion chemistry. Part I. Methane and related compounds. J Phys Chem Ref Data 15:1087–1279

    Article  CAS  Google Scholar 

  46. Hippler H, Rahn R, Troe J (1990) Temperature and pressure dependence of ozone formation rates in the range 1–1000 bar and 90–370 K. J Chem Phys 93:6560–6569

    Article  CAS  Google Scholar 

Download references

Acknowledgments

XPS measurements performed by Antje Jung (IOT) are gratefully acknowledged. VVR Sai thanks Mitsubishi Rayon Ltd. for POF samples. We acknowledge DAAD IIT Master Sandwich Scholarship Program through which this collaborative work is made possible. We thank Sebastian Lübeck and Stefan Kotula (IOT) for providing us information from recent unpublished work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. R. Sai or Claus-Peter Klages.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 501 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasanthakumari, P., Khosravi, Z., Sai, V.V.R. et al. PMMA Surface Functionalization Using Atmospheric Pressure Plasma for Development of Plasmonically Active Polymer Optical Fiber Probes. Plasma Chem Plasma Process 36, 1067–1083 (2016). https://doi.org/10.1007/s11090-016-9717-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-016-9717-2

Keywords

Navigation