Skip to main content

Advertisement

Log in

Atmospheric Pressure Ammonia Synthesis Using Non-thermal Plasma Assisted Catalysis

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

This paper described a novel and green approach on catalytic ammonia synthesis using non-thermal plasma (NTP). The process studied in this paper involves the synthesis and absorption of ammonia under atmospheric pressure and low temperature. The effects of operational parameters including applied voltage, frequency, gas component and flow rate on ammonia synthesis under NTP conditions are studied in this paper. In addition, different selected catalysts and absorbents were investigated under different conditions of NTP treatment and the ammonia efficiency was reported and analyzed. Ru catalyst with carbon nanotube support, along with Cs promoter and micro porous absorbents including Molecular Sieve 13X and Amberlyst 15 yield the highest ammonia efficiency in this process. Results further indicated that frequency and applied voltage of 10,000 Hz and 6000 V, with N2:H2 feed ratio of 3:1 provided the optimized efficiency of ammonia synthesis of 2.3 gNH3/kWh.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hargreaves J (2014) Nitrides as ammonia synthesis catalysts and as potential nitrogen transfer reagents. Appl Petrochem Res 4(1):3–10

    Article  CAS  Google Scholar 

  2. Gilland B (2014) Is a Haber–Bosch world sustainable? Population, nutrition, cereals, nitrogen and environment. J Soc Polit Econ Stud 39(2):166

    Google Scholar 

  3. Razon LF (2014) Life cycle analysis of an alternative to the Haber–Bosch process: non-renewable energy usage and global warming potential of liquid ammonia from cyanobacteria. Environ Prog Sustain Energy 33(2):618–624

    Article  CAS  Google Scholar 

  4. Kandemir T, Schuster ME, Senyshyn A, Behrens M, Schlögl R (2013) The Haber–Bosch process revisited: on the real structure and stability of “ammonia iron” under working conditions. Angew Chem Int Ed 52(48):12723–12726

    Article  CAS  Google Scholar 

  5. Vojvodic A, Medford AJ, Studt F, Abild-Pedersen F, Khan TS, Bligaard T, Nørskov J (2014) Exploring the limits: a low-pressure, low-temperature Haber–Bosch process. Chem Phys Lett 598:108–112

    Article  CAS  Google Scholar 

  6. Marnellos G, Stoukides M (1998) Ammonia synthesis at atmospheric pressure. Science 282(5386):98–100

    Article  CAS  Google Scholar 

  7. Koponen J (2015) Review of water electrolysis technologies and design of renewable hydrogen production systems

  8. Tun LL, Matsuura N, Mori S (2015) Influence of temperature on synergistic CO2 decomposition using hybrid reactor of DBD-solid oxide electrolyser cell. In: Proceedings of 22th international symposium on plasma chemistry (ISPC22)

  9. Mizushima T, Matsumoto K, J-i Sugoh, Ohkita H, Kakuta N (2004) Tubular membrane-like catalyst for reactor with dielectric-barrier-discharge plasma and its performance in ammonia synthesis. Appl Catal A 265(1):53–59

    Article  CAS  Google Scholar 

  10. Bai M, Zhang Z, Bai X, Bai M, Ning W (2003) Plasma synthesis of ammonia with a microgap dielectric barrier discharge at ambient pressure. IEEE Trans Plasma Sci 31(6):1285–1291

    Article  CAS  Google Scholar 

  11. Mingdong B, Xiyao B, Zhitao Z, Mindi B (2000) Synthesis of ammonia in a strong electric field discharge at ambient pressure. Plasma Chem Plasma Process 20(4):511–520

    Article  CAS  Google Scholar 

  12. Lan R, Irvine JT, Tao S (2013) Synthesis of ammonia directly from air and water at ambient temperature and pressure. Scientific reports 3

  13. Ma H, Chen P, Zhang M, Lin X, Ruan R (2002) Study of SO2 removal using non-thermal plasma induced by dielectric barrier discharge (DBD). Plasma Chem Plasma Process 22(2):239–254

    Article  CAS  Google Scholar 

  14. Chauvet L, Thérèse L, Caillier B, Guillot P (2014) Characterization of an asymmetric DBD plasma jet source at atmospheric pressure. J Anal At Spectrom 29(11):2050–2057

    Article  CAS  Google Scholar 

  15. Van Durme J, Dewulf J, Leys C, Van Langenhove H (2008) Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment: a review. Appl Catal B 78(3):324–333

    Article  Google Scholar 

  16. Penetrante B, Hsiao M, Bardsley J, Merritt B, Vogtlin G, Kuthi A, Burkhart C, Bayless J (1997) Identification of mechanisms for decomposition of air pollutants by non-thermal plasma processing. Plasma Sources Sci Technol 6(3):251

    Article  CAS  Google Scholar 

  17. Kerpal C, Harding DJ, Lyon JT, Meijer G, Fielicke A (2013) N2 activation by neutral ruthenium clusters. The Journal of Physical Chemistry C 117(23):12153–12158

    Article  CAS  Google Scholar 

  18. Fridman A, Kennedy LA (2004) Plasma physics and engineering. CRC Press, Boca Raton

    Book  Google Scholar 

  19. Penetrante B, Hsiao M, Merritt B, Vogtlin G, Wallman P, Neiger M, Wolf O, Hammer T, Broer S (1996) Pulsed corona and dielectric-barrier discharge processing of NO in N2. Appl Phys Lett 68(26):3719–3721

    Article  CAS  Google Scholar 

  20. Penetrante BM, Hsiao MC, Merritt BT, Vogtlin GE, Wallman HP (1995) Comparison of electrical discharge techniques for nonthermal plasma processing of NO in N 2. IEEE Trans Plasma Sci 23(4):679–687

    Article  CAS  Google Scholar 

  21. Kitano M, Inoue Y, Yamazaki Y, Hayashi F, Kanbara S, Matsuishi S, Yokoyama T, Kim S-W, Hara M, Hosono H (2012) Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store. Nat Chem 4(11):934–940

    Article  CAS  Google Scholar 

  22. Iwamoto J, Itoh M, Kajita Y, Saito M, K-i Machida (2007) Ammonia synthesis on magnesia supported ruthenium catalysts with mesoporous structure. Catal Commun 8(6):941–944

    Article  CAS  Google Scholar 

  23. Neyts EC, Ostrikov K, Sunkara MK, Bogaerts A (2015) Plasma catalysis: synergistic effects at the nanoscale. Chem Rev 115(24):13408–13446

    Article  CAS  Google Scholar 

  24. Uyama H, Matsumoto O (1989) Synthesis of ammonia in high-frequency discharges. Plasma Chem Plasma Process 9(1):13–24

    Article  CAS  Google Scholar 

  25. Eliasson B, Kogelschatz U (1991) Nonequilibrium volume plasma chemical processing. IEEE Trans Plasma Sci 19(6):1063–1077

    Article  CAS  Google Scholar 

  26. Larichev YV (2010) Effect of Cs + promoter in Ru/MgO catalysts. J Phys Chem C 115(3):631–635

    Article  Google Scholar 

  27. Yan Y, Miao J, Yang Z, Xiao F-X, Yang HB, Liu B, Yang Y (2015) Carbon nanotube catalysts: recent advances in synthesis, characterization and applications. Chem Soc Rev 44(10):3295–3346

    Article  CAS  Google Scholar 

  28. Sugiyama K, Akazawa K, Oshima M, Miura H, Matsuda T, Nomura O (1986) Ammonia synthesis by means of plasma over MgO catalyst. Plasma Chem Plasma Process 6(2):179–193

    Article  CAS  Google Scholar 

  29. Larichev YV, Moroz BL, Zaikovskii VI, Yunusov SM, Kalyuzhnaya ES, Shur VB, Bukhtiyarov VI (2007) XPS and TEM studies on the role of the support and alkali promoter in Ru/MgO and Ru-Cs +/MgO catalysts for ammonia synthesis. J Phys Chem C 111(26):9427–9436

    Article  CAS  Google Scholar 

  30. Himstedt HH, Huberty MS, McCormick AV, Schmidt LD, Cussler E (2015) Ammonia synthesis enhanced by magnesium chloride absorption. AIChE J 61(4):1364–1371

    Article  CAS  Google Scholar 

  31. Sharonov VE, Aristov YI (2005) Ammonia adsorption by MgCl2, CaCl2 and BaCl2 confined to porous alumina: the fixed bed adsorber. React Kinet Catal Lett 85(1):183–188

    Article  CAS  Google Scholar 

  32. Aprea P, Caputo D, Gargiulo N, Iucolano F, Pepe F (2010) Modeling carbon dioxide adsorption on microporous substrates: comparison between Cu-BTC metal–organic framework and 13X zeolitic molecular sieve. J Chem Eng Data 55(9):3655–3661

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was funded and supported by Legislative-Citizen Commission on Minnesota Resources (LCCMR) and Minnesota’s Discovery, Research, and Innovation Economy (MnDRIVE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Ruan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, P., Li, Y., Cheng, Y. et al. Atmospheric Pressure Ammonia Synthesis Using Non-thermal Plasma Assisted Catalysis. Plasma Chem Plasma Process 36, 1201–1210 (2016). https://doi.org/10.1007/s11090-016-9713-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-016-9713-6

Keywords

Navigation