Skip to main content
Log in

The Formation of Gas Bubbles by Processing of Liquid n-Heptane in the Microwave Discharge

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Numerical modeling of the process of formation of gas bubbles during initiation of the microwave discharge in liquid n-heptane at atmospheric pressure has been performed. The developed model has an axial symmetry. The model is based on joint solution of the Maxwell equations, Navier–Stokes equation, heat equation, continuity equations for electrons (written in the ambipolar diffusion approximation) and the n-heptane concentration (including its thermal decomposition and dissociation by electron impact) and the Boltzmann equation for free electrons of the plasma. The calculations allowed to describe the dynamics of the formation of gas bubbles in the liquid, to evaluate the role of electron impact in the decomposition of n-heptane, and to estimate the characteristic times of various processes in the system. The results of new experiments are compared with the simulation results. On the basis of this comparison one could explain the presence in the spectra of the discharge only bands of C2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Samukawa S, Hori M, Rauf S, Tachibana K, Bruggeman P, Kroesen G, Whitehead JC, Murphy AB, Gutsol AF, Starikovskaia S, Kortshagen U, Boeuf J-P, Sommerer TJ, Kushner MJ, Czarnetzki U, Mason N (2012) The 2012 plasma roadmap. J Phys D Appl Phys 45:253001

    Article  Google Scholar 

  2. Bruggeman P, Leys C (2009) Non-thermal plasmas in and in contact with liquids. J Phys D Appl Phys 42:053001

    Article  Google Scholar 

  3. Yang Y, Cho YI, Fridman A (2012) Plasma discharge in liquid: water treatment and application. CRC Press, Boca Raton

    Google Scholar 

  4. Graham WG, Stalder KR (2011) Plasmas in liquids and some of their applications in nanoscience. J Phys D Appl Phys 44:174037

    Article  Google Scholar 

  5. Hattori Y, Mukasa S, Nomura S, Toyota H (2010) Optimization and analysis of shape of coaxial electrode for microwave plasma in water. J Appl Phys 107:063305

    Article  Google Scholar 

  6. Ishijima T, Sugiura H, Saito R, Toyoda H, Sugai H (2010) Efficient production of microwave bubble plasma in water for plasma processing in liquid. Plasma Sources Sci Technol 19:015010

    Article  Google Scholar 

  7. Wang B, Sun B, Zhu X, Yan Z, Liu Y, Liu H (2013) Effect of reactor parameters on matching properties of microwave discharge in liquid. J Phys Conf Ser 418:012099

    Article  Google Scholar 

  8. Wang B, Sun B, Zhu X, Yan Z, Liu Y, Liu H (2013) Degradation of methylene blue by microwave discharge plasma in liquid. Contrib Plasma Phys 53:697–702

    Article  CAS  Google Scholar 

  9. Nomura S, Toyota H, Mukasa S, Takahashi Y, Maehara T, Kawashima A, Yamashita H (2008) Discharge characteristics of microwave and high-frequency in liquid plasma in water. Appl Phys Express 1:046002

    Article  Google Scholar 

  10. Ishijima T, Hotta H, Sugai H (2007) Multibubble plasma production and solvent decomposition in water by slot-excited microwave discharge. Appl Phys Lett 91:121501

    Article  Google Scholar 

  11. Ishijima T, Sugiura H, Satio R, Toyada H, Sugai H (2010) Efficient production of microwave bubble plasma in water for plasma processing in liquid. Plasma Sources Sci Technol 19:015010

    Article  Google Scholar 

  12. Ishijima T, Nosaka K, Tanaka Y, Uesugi Y, Goto Y, Horibe H (2013) A high-speed photoresist removal process using multibubble microwave plasma under a mixture of multiphase plasma environment. Appl Phys Lett 103:142101

    Article  Google Scholar 

  13. Nomura S, Toyota H (2003) Sonoplasma generated by a combination of ultrasonic waves and microwave irradiation. Appl Phys Lett 83:4503

    Article  CAS  Google Scholar 

  14. Nomura S, Toyota H, Tawara M, Yamashota H (2006) Fuel gas production by microwave plasma in liquid. Appl Phys Lett 88:231502

    Article  Google Scholar 

  15. Nomura S, Toyota H, Mukasa S, Yamashita H, Maehara T (2006) Microwave plasma in hydrocarbon liquids. Appl Phys Lett 88:211503

    Article  Google Scholar 

  16. Nomura S, Toyota H, Mukasa S, Yamashita H, Maehara T, Kawashima A (2009) Production of hydrogen in a conventional microwave oven. J Appl Phys 106:073306

    Article  Google Scholar 

  17. Toyota H, Nomura S, Takahashi Y, Mukasa S (2008) Submerged synthesis of diamond in liquid alcohol plasma. Diam Relat Mater 17:1902–1904

    Article  CAS  Google Scholar 

  18. Lebedev YuA, Konstantinov VS, Yablokov MYu, Shchegolikhin AN, Surin NM (2014) Microwave plasma in liquid n-heptane: a study of plasma chemical reaction products. High Energy Chem 48:385–388

    Article  CAS  Google Scholar 

  19. Buravtsev NN, Konstantinov VS, Lebedev YuA, Mavlyudov TB (2012) Microwave discharge in liquid heptanes. In: Lebedev YA, Yanus K (eds) Microwave discharges: fundamentals and applications (proceedings of the VII international workshop, 10–14 September, Zvenigorod, Russia), Moscow

  20. Toyota H, Nomura S, Mukasa S (2013) A practical electrode for microwave plasma processes. Int J Mater Sci Appl 2(3):83–88

    Google Scholar 

  21. Hattori Y, Mukasa S, Toyota H, Yamashita H, Nomura S (2012) Improvement in preventing metal contamination from an electrode used for generating microwave plasma in liquid–Alumina. Surf Coat Technol 206:2140–2145

    Article  CAS  Google Scholar 

  22. Camerotto E, De Schepper R, Nikiforov AY (2012) Study of ultrasound-assisted radio-frequency plasma discharges in n-dodecane. J Phys D Appl Phys 45:435201

    Article  Google Scholar 

  23. Lebedev YuA, Epstein IL, Shakhatov VA, Yusupova EV, Konstantinov VS (2014) Spectroscopy of microwave discharge in liquid C7–C16 hydrocarbons. High Temp 52:319

    Article  CAS  Google Scholar 

  24. Hamdan A, Marinov I, Rousseau A, Belmonte T (2014) Microdischarge ignition in liquid heptane. IEEE Trans Plasma Sci 42:2616–2617

    Article  Google Scholar 

  25. Gidalevich E, Boxman RL (2012) Microwave excitation of submerged plasma bubbles. J Phys D Appl Phys 45:245204

    Article  Google Scholar 

  26. Gidalevich E, Boxman RL (2013) Plasma bubbles in a water jet excited by microwave radiation. In: 21st international symposium on plasma chemistry (ISPC 21), Australia

  27. Takeuchi N, Ishii Y, Yasuoka K (2012) Modelling chemical reactions in dc plasma inside oxygen bubbles in water. Plasma Sources Sci Technol 21:015006

    Article  Google Scholar 

  28. Tong L (2013) Simulation of the plasma generated in a gas bubble. In: Proceedings of the 2013 COMSOL conference in Boston, USA

  29. Tatarinov AV, Lebedev YA, Epstein IL, Mukhamadiyeva AR (2015) Modeling of the formation of gas bubbles under the action of microwave discharge in liquid n-heptane. High Energy Chem (accepted for publishing)

  30. Sun Y, Beckermann C (2004) Diffuse interface modeling of two-phase flows based on averaging: mass and momentum equations. Phys D 198:281–308

    Article  Google Scholar 

  31. Jamet D (2010) Diffuse interface models in fluid mechanics. http://pmc.polytechnique.fr/mp/GDR

  32. Jacqmin D (1999) Calculation of two-phase Navier–Stokes flows using phase field modeling. J Comput Phys 155:96

    Article  Google Scholar 

  33. Cahn JW, Hilliard JE (1958) Free energy of a nonuniform system. I. Interfacial free energy. J Chem Phys 28:258–267

    Article  CAS  Google Scholar 

  34. Cahn JW, Hilliard JE (1959) Free energy of a nonuniform system. III. Nucleation in a two-component incompressible fluid. J Chem Phys 31:688–699

    Article  CAS  Google Scholar 

  35. Hagelaar GJM, Pitchford LC (2005) Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models. Plasma Sources Sci Technol 14:722–733

    Article  CAS  Google Scholar 

  36. Kosarev IN, Aleksandrov NL, Kindysheva SV, Starikovskaia SM, Starikovskii AYu (2009) Kinetics of ignition of saturated hydrocarbons by nonequilibrium plasma: C2H6 to C5H12 containing mixtures. Combust Flame 156:221

    Article  CAS  Google Scholar 

  37. Slovetskii DI (1981) Decomposition of hydrocarbons in the glow discharge. In: Smirnov BM (ed) Proceedings of the chemistry of plasma. Energoizdat, Moscow (in Russian)

  38. Morgan database (2014). www.lxcat.net. Retrieved 29 Aug 2014

  39. Vacher JR, Jorand F, Blin-Simiand N, Pasquiers S (2010) Electron impact ionization cross-sections of n-heptane. Int J Mass Spectrom 295:78

    Article  CAS  Google Scholar 

  40. Yue P, Feng JJ, Liu C, Shen J (2004) A diffuse-interface method for simulating two-phase flows of complex fluids. J Fluid Mech 515:293–317

    Article  CAS  Google Scholar 

  41. Razer YP (1991) Gas discharge physics. Springer, Berlin

    Book  Google Scholar 

  42. McDaniel EW, Mason EA (1973) The mobility and diffusion of ions in gases. Wiley, New York

    Google Scholar 

  43. Encyclopedia of low temperature plasma (2000) ed by Fortov VE 1: II.4.5, Nauka, Moscow (in Russian)

  44. COMSOL 3.5a. http://www.comsol.com

  45. Curran HJ, Gaffuri P, Pitz WJ, Westbrook CK (1998) A comprehensive modeling study of n-heptane oxidation. Combust Flame 114:149

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Tatarinov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebedev, Y.A., Tatarinov, A.V., Epstein, I.L. et al. The Formation of Gas Bubbles by Processing of Liquid n-Heptane in the Microwave Discharge. Plasma Chem Plasma Process 36, 535–552 (2016). https://doi.org/10.1007/s11090-015-9685-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-015-9685-y

Keywords

Navigation