Skip to main content

Effect of Cold Atmospheric Pressure Plasma on the Wheat Seedlings Vigor and on the Inactivation of Microorganisms on the Seeds Surface

Abstract

Effects of a cold atmospheric pressure plasma (CAPP) treatment on the germination, production of biomass, vigor of seedlings, uptake of water of wheat seeds (Triticum aestivum L. cv. Eva) were investigated. The CAPP treatment influence on the inactivation of microorganisms occurring on the surface of wheat seeds was investigated also. The so-called Diffuse Coplanar Surface Barrier Discharge generating a cold plasma in ambient air with high power volume density of some 100 W/cm3 was used for the treatment of seeds at exposure times in the range of 10–600 s. The optical emission spectroscopy and the electrical measurements were used for estimation of CAPP parameters. The obtained results indicate that the germination rate, dry weight and vigor of seedlings significantly increased for plasma treatment from 20 to 50 s. The plasma treatment of seeds led to an extensive increase in wettability and faster germination comparing with the untreated seeds. The growth inhibition effect of CAPP on the surface microflora of wheat seeds increased with the increase of the treatment time. The efficiency of the treatment of wheat seeds artificially contaminated with pure cultures of filamentous fungi decreased in the following order: Fusarium nivale > F. culmorum > Trichothecium roseum > Aspergillus flavus > A. clavatus.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Roth JR (2001) Industrial plasma engineering: applications to nonthermal plasma processing, vol 2. IOP Publishing Ltd., London

    Book  Google Scholar 

  2. 2.

    Laroussi M (2005) Low temperature plasma-based sterilization : overview and state-of-the-art. Plasma Processes Polym 2:391–400. doi:10.1002/ppap.200400078

    Article  CAS  Google Scholar 

  3. 3.

    Ben Gadri R, Roth JR, Montie TC et al (2000) Sterilization and plasma processing of room temperature surfaces with a one atmosphere uniform glow discharge plasma (OAUGDP). Surf Coat Technol 131:528–541. doi:10.1016/S0257-8972(00)00803-3

    Article  Google Scholar 

  4. 4.

    Morfill GE, Kong MG, Zimmermann JL (2009) Focus on plasma medicine. N J Phys 11:115011

    Article  Google Scholar 

  5. 5.

    Laroussi M, Leipold F (2004) Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure. Int J Mass Spectrom 233:81–86. doi:10.1016/j.ijms.2003.11.016

    Article  CAS  Google Scholar 

  6. 6.

    Machala Z, Chládeková L, Pelach M (2010) Plasma agents in bio-decontamination by dc discharges in atmospheric air. J Phys D Appl Phys 43:222001

    Article  Google Scholar 

  7. 7.

    Lee K, Joo B, Hee D et al (2005) Sterilization of Escherichia coli and MRSA using microwave-induced argon plasma at atmospheric pressure. Surf Coat Technol 193:35–38. doi:10.1016/j.surfcoat.2004.07.034

    Article  CAS  Google Scholar 

  8. 8.

    Moisan M, Barbeau J, Moreau S et al (2001) Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms. Int J Pharm 226:1–21. doi:10.1016/S0378-5173(01)00752-9

    Article  CAS  Google Scholar 

  9. 9.

    Basaran P, Basaran-Akgul N, Oksuz L (2008) Elimination of Aspergillus parasiticus from nut surface with low pressure cold plasma (LPCP) treatment. Food Microbiol 25:626–632. doi:10.1016/j.fm.2007.12.005

    Article  CAS  Google Scholar 

  10. 10.

    Dobrynin D, Fridman G, Friedman G, Fridman A (2009) Physical and biological mechanisms of direct plasma interaction with living tissue. N J Phys 11:115020. doi:10.1088/1367-2630/11/11/115020

    Article  Google Scholar 

  11. 11.

    Kostov KG, Rocha V, Koga-Ito CY et al (2010) Bacterial sterilization by a dielectric barrier discharge (DBD) in air. Surf Coat Technol 204:2954–2959. doi:10.1016/j.surfcoat.2010.01.052

    Article  CAS  Google Scholar 

  12. 12.

    Koval’ová Z, Tarabová K, Hensel K, Machala Z (2013) Decontamination of Streptococci biofilms and Bacillus cereus spores on plastic surfaces with DC and pulsed corona discharges. Eur Phys J Appl Phys 61:24306. doi:10.1051/epjap/2012120449

    Article  Google Scholar 

  13. 13.

    Sinclair JB (1993) Control of seedborne pathogens and diseases of soybean seeds and seedlings. Pestic Sci 37:15–19. doi:10.1002/ps.2780370104

    Article  CAS  Google Scholar 

  14. 14.

    Michalíková A, Roháčik T, Kulichova R (1995) Efficacy of Vitavax 200 FF against diseases of spring barley caused by helminthosporioses. Agriculture 41:518–529

    Google Scholar 

  15. 15.

    Oehrle NW, Karr DB, Kremer RJ, Emerich DW (2000) Enhanced attachment of Bradyrhizobium japonicum to soybean through reduced root colonization of internally seedborne microorganisms. Can J Microbiol 46:600–606. doi:10.1139/w00-030

    Article  CAS  Google Scholar 

  16. 16.

    Henselová M, Hudecová D (2001) Differences in the microflora of scarified and unscarified seeds of Karwinskia humboldtiana (Rhamnaceae). Folia Microbiol 46:543–548

    Article  Google Scholar 

  17. 17.

    Pietruszewski S (1996) Effects of magnetic biostimulation of wheat seeds on germination, yield and proteins. Int Agrophys 10:51–55

    Google Scholar 

  18. 18.

    Volin JC, Denes FS, Young RA, Park SMT (2000) Modification of seed germination performance through cold plasma chemistry technology. Crop Sci 40:1706–1718

    Article  CAS  Google Scholar 

  19. 19.

    Meiqiang Yin, Mingjing Huang, Ma Buzhou MT (2005) Stimulating effects of seed treatment by magnetized plasma on tomato growth and yield. Plasma Sci Technol 7:3143

    Article  Google Scholar 

  20. 20.

    Marinković D, Borcean I (2009) Effect of cold electron plasma and extremely low frequency electron-magnetic field on wheat yield. Agric Sci 41:96–101

    Google Scholar 

  21. 21.

    Lynikiene S, Pozeliene GR (2006) Influence of corona discharge field on seed viability and dynamics of germination. Int Agrophys 20:195–200

    Google Scholar 

  22. 22.

    Borodin IF, Shcherbakov KN (1998) Electrophysical ways of stimulating plant growth. Mach Agric 5:35–36 (in Russian)

    Google Scholar 

  23. 23.

    Palov I (2003) Research of influence of electromagnetic impact on maize seed and plants. Mach Agric 15:10–15 (in Bulgarian)

    Google Scholar 

  24. 24.

    Dhayal M, Lee S, Park S (2006) Using low-pressure plasma for Carthamus tinctorium L. seed surface modification. Vacuum 80:499–506. doi:10.1016/j.vacuum.2005.06.008

    Article  CAS  Google Scholar 

  25. 25.

    Šerá B, Straňák V, Šerý M, Tichý M, Špatenka P (2008) Germination of Chenopodium albumin response to microwave plasma treatment. Plasma Sci Technol 10:506–511

    Article  Google Scholar 

  26. 26.

    Šerá B, Špatenka P, Šerý M et al (2010) Influence of plasma treatment on wheat and oat germination and early growth. IEEE Trans Plasma Sci 38:2963–2968

    Article  Google Scholar 

  27. 27.

    Živković S, Puač N, Giba Z et al (2004) The stimulatory effect of non-equilibrium (low temperature) air plasma pretreatment on light-induced germination of Paulownia tomentosa seeds. Seed Sci Technol 32:693–701

    Article  Google Scholar 

  28. 28.

    Dobrin D, Magureanu M, Mandache NB, Ionita M-D (2015) The influence of non-thermal plasma treatment on wheat germination. Innov Food Sci Emerg Technol 29:255–260. doi:10.1016/j.ifset.2015.02.006

    Article  CAS  Google Scholar 

  29. 29.

    Ksenz NV, Kaciesvili SV (2000) Electrostatic field and productivity of cereals. Mech Electrif Agric 6:18–19 (in Russian)

    Google Scholar 

  30. 30.

    Huang H-H, Wang S-R (2008) The effects of inverter magnetic fields on early seed germination of mung beans. Bioelectromagnetics 29:649–657. doi:10.1002/bem.20432

    Article  Google Scholar 

  31. 31.

    Vashisth A, Nagarajan S (2008) Exposure of seeds to static magnetic field enhances germination and early growth characteristics in chickpea (Cicer arietinum L.). Bioelectromagnetics 29:571–578. doi:10.1002/bem.20426

    Article  Google Scholar 

  32. 32.

    Mitra A, Li Y-F, Klämpfl TG et al (2013) Inactivation of surface-borne microorganisms and increased germination of seed specimen by cold atmospheric plasma. Food Bioprocess Technol 7:645–653. doi:10.1007/s11947-013-1126-4

    Article  Google Scholar 

  33. 33.

    Jiang J, He X, Li L, Li J, Shao H, Xu Q, Ye R, Dong Y (2014) Effect of cold plasma treatment on seed germination and growth of wheat. Plasma Sci Technol 16:54–58

    Article  Google Scholar 

  34. 34.

    Deng X, Shi J, Kong MG (2006) Physical mechanisms of inactivation of Bacillus subtilis spores using cold atmospheric plasmas. IEEE Trans Plasma Sci 34:1310–1316. doi:10.1109/TPS.2006.877739

    Article  Google Scholar 

  35. 35.

    Jung H, Kim DB, Gweon B et al (2010) Enhanced inactivation of bacterial spores by atmospheric pressure plasma with catalyst TiO2. Appl Catal B 93:212–216. doi:10.1016/j.apcatb.2009.09.031

    Article  CAS  Google Scholar 

  36. 36.

    Ohkawa H, Akitsu T, Tsuji M, Kimura H (2006) Pulse-modulated, high-frequency plasma sterilization at atmospheric-pressure. Surf Coat Technol 200:5829–5835. doi:10.1016/j.surfcoat.2005.08.124

    Article  CAS  Google Scholar 

  37. 37.

    Gweon B, Kim DB, Moon SY, Choe W (2009) Escherichia coli deactivation study controlling the atmospheric pressure plasma discharge conditions. Curr Appl Phys 9:625–628. doi:10.1016/j.cap.2008.06.001

    Article  Google Scholar 

  38. 38.

    Selcuk M, Oksuz L, Basaran P (2008) Decontamination of grains and legumes infected with Aspergillus spp. and Penicillum spp. by cold plasma treatment. Bioresour Technol 99:5104–5109. doi:10.1016/j.biortech.2007.09.076

    Article  CAS  Google Scholar 

  39. 39.

    Arrus K, Blank G, Abramson D et al (2005) Aflatoxin production by Aspergillus flavus in Brazil nuts. J Stored Prod Res 41:513–527. doi:10.1016/j.jspr.2004.07.005

    Article  CAS  Google Scholar 

  40. 40.

    Yu MC, Yuan J-M (2004) Environmental factors and risk for hepatocellular carcinoma. Gastroenterology 127:S72–S78. doi:10.1016/j.gastro.2004.09.018

    Article  CAS  Google Scholar 

  41. 41.

    Park BJ, Takatori K, Sugita-Konishi Y et al (2007) Degradation of mycotoxins using microwave-induced argon plasma at atmospheric pressure. Surf Coat Technol 201:5733–5737. doi:10.1016/j.surfcoat.2006.07.092

    Article  CAS  Google Scholar 

  42. 42.

    Černák M, Kováčik D, Ráhel’ J et al (2011) Generation of a high-density highly non-equilibrium air plasma for high-speed large-area flat surface processing. Plasma Phys Control Fusion 53:124031. doi:10.1088/0741-3335/53/12/124031

    Article  Google Scholar 

  43. 43.

    Černák M, Černáková L, Hudec I et al (2009) Diffuse Coplanar Surface Barrier Discharge and its applications for in-line processing of low-added-value materials. Eur Phys J Appl Phys 47:22806. doi:10.1051/epjap/2009131

    Article  Google Scholar 

  44. 44.

    Šimor M, Ráhel’ J, Vojtek P et al (2002) Atmospheric-pressure diffuse coplanar surface discharge for surface treatments. Appl Phys Lett 81:2716. doi:10.1063/1.1513185

    Article  Google Scholar 

  45. 45.

    Homola T, Matoušek J, Medvecká V et al (2012) Atmospheric pressure diffuse plasma in ambient air for ITO surface cleaning. Appl Surf Sci 258:7135–7139. doi:10.1016/j.apsusc.2012.03.188

    Article  CAS  Google Scholar 

  46. 46.

    Navrátil Z, Trunec D, Šmíd R, Lazar L (2006) A software for optical emission spectroscopy: problem formulation and application to plasma diagnostics. Czech J Phys 56:944–951

    Article  Google Scholar 

  47. 47.

    Laux CO (2002) Radiation and nonequilibrium collisional-radiative models. In: Fletcher D, Charbonnier JM, Sarma GSR, Magin T (eds) von Karman Institute Lecture Series 2002–2007, Physico-chemical modeling of high enthalpy and plasma flows. Rhode-Saint-Genèse, Belgium

  48. 48.

    Abdul-Baki AA, Anderson JD (1973) Vigor determination in soybean seed by multiple criteria1. Crop Sci 13:630–633

    Article  Google Scholar 

  49. 49.

    Houghtby GB, Maturin LJ, Koenig EK, Wesser JW (1992) Microbial count methods. In: Marshall RT (ed) Standard methods for the examination of dairy products, 16th edn. American Public Health Association, Washington, DC, pp 213–216

    Google Scholar 

  50. 50.

    Betina V, Baráthová H, Fargašová A et al (1987) Microbial laboratory methods. Alfa SNTL Publishing House, Bratislava (in Slovak)

    Google Scholar 

  51. 51.

    Fassatiová O (1979) Moulds and filamentous fungi in technical microbiology. SNTL Publishing House, Praha (in Czech)

    Google Scholar 

  52. 52.

    Hudecová D, Jantová S, Melník M, Uher M (1996) New azidometalkojates and their biological activity. Folia Microbiol 41:473–476. doi:10.1007/BF02814660

    Article  Google Scholar 

  53. 53.

    Puntner W (1981) Manual for field trials in plant protection. Ciba-Geigy Ltd, Basel

    Google Scholar 

  54. 54.

    Rekanovic E, Potocnik I, Milijasevic-Marcic S et al (2010) Efficacy of seaweed concentrate from Ecklonia maxima (Osbeck) and conventional fungicides in the control of Verticillium wilt of pepper. Pesticidi i fitomedicina 25:319–324. doi:10.2298/PIF1004319R

    Article  CAS  Google Scholar 

  55. 55.

    Fischer G, Tausz M, Köck M, Grill D (2004) Effects of weak 16 3/2 Hz magnetic fields on growth parameters of young sunflower and wheat seedlings. Bioelectromagnetics 25:638–641. doi:10.1002/bem.20058

    Article  CAS  Google Scholar 

  56. 56.

    Weaver JC (1993) Electroporation: a general phenomenon for manipulating cells and tissues. J Cell Biochem 51:426–453

    Article  CAS  Google Scholar 

  57. 57.

    Muraji M, Asai T, Tatebe W (1998) Primary root growth rate of Zea mays seedlings grown in an alternating magnetic field of different frequencies. Bioelectrochem Bioenergy 44:271–273. doi:10.1016/S0302-4598(97)00079-2

    Article  CAS  Google Scholar 

  58. 58.

    Giba Z, Grubišic D, Konjevic R (2004) Nitric oxide signaling in higher plants. Studium Press, LLC, Houston

    Google Scholar 

  59. 59.

    Kikuchi K, Koizumi M, Ishida N, Kano H (2006) Water uptake by dry beans observed by micro-magnetic resonance imaging. Ann Bot 98:545–553. doi:10.1093/aob/mcl145

    Article  Google Scholar 

  60. 60.

    Abebe AT, Modi AT (2009) Hydro-priming in dry bean (Phaseolus vulgaris L.). Res J Seed Sci 2:23–31. doi:10.3923/rjss.2009.23.31

    Article  Google Scholar 

  61. 61.

    Dubinov AE, Lazarenko EM, Selemir VD (2000) Effect of glow discharge air plasma on grain crops seed. IEEE Trans Plasma Sci 28:180–183

    Article  Google Scholar 

  62. 62.

    Henselová M, Slováková Ľ, Martinka M, Zahoranová A (2012) Growth, anatomy and enzyme activity changes in maize roots induced by treatment of seeds with low-temperature plasma. Biologia 67:490–497. doi:10.2478/s11756-012-0046-5

    Article  Google Scholar 

  63. 63.

    Stolárik T, Henselová M, Martinka M et al (2015) Effect of low-temperature plasma on the structure of seeds, growth and metabolism of endogenous phytohormones in pea (Pisum sativum L.). Plasma Chem Plasma Process. doi:10.1007/s11090-015-9627-8

    Google Scholar 

  64. 64.

    Kobayashi DY, Palumbo JD (2000) Microbial endophytes. Marcel Dekker Inc., New York

    Google Scholar 

  65. 65.

    Wachowska U, Stasiulewicz-Paluch AD, Głowacka K et al (2013) Response of epiphytes and endophytes isolated from winter wheat grain to biotechnological and fungicydal treatments. Pol J Environ Stud 22:267–273

    Google Scholar 

  66. 66.

    Duan C, Wang X, Zhu Z, Wu X (2007) Testing of seedborne fungi in wheat germplasm conserved in the national crop genebank of China. Agric Sci China 6:682–687. doi:10.1016/S1671-2927(07)60100-X

    Article  Google Scholar 

  67. 67.

    Machala Z, Jedlovský I, Chládeková L et al (2009) DC discharges in atmospheric air for bio-decontamination: spectroscopic methods for mechanism identification. Eur Phys J D 54:195–204. doi:10.1140/epjd/e2009-00035-7

    Article  CAS  Google Scholar 

  68. 68.

    Sohbatzadeh F, Hosseinzadeh Colagar A, Mirzanejhad S, Mahmodi S (2010) E. coli, P. aeruginosa, and B. cereus bacteria sterilization using afterglow of non-thermal plasma at atmospheric pressure. Appl Biochem Biotechnol 160:1978–1984. doi:10.1007/s12010-009-8817-3

    Article  CAS  Google Scholar 

  69. 69.

    Suhem K, Matan N, Nisoa M, Matan N (2013) Inhibition of Aspergillus flavus on agar media and brown rice cereal bars using cold atmospheric plasma treatment. Int J Food Microbiol 161:107–111. doi:10.1016/j.ijfoodmicro.2012.12.002

    Article  Google Scholar 

  70. 70.

    Kim JE, Lee D-U, Min SC (2014) Microbial decontamination of red pepper powder by cold plasma. Food Microbiol 38:128–136. doi:10.1016/j.fm.2013.08.019

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Slovak Grant Agency for Science VEGA No. 1/0904/14. We wish to thank the Sedos, Krakovany in Slovakia for the samples of seeds.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Zahoranová.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zahoranová, A., Henselová, M., Hudecová, D. et al. Effect of Cold Atmospheric Pressure Plasma on the Wheat Seedlings Vigor and on the Inactivation of Microorganisms on the Seeds Surface. Plasma Chem Plasma Process 36, 397–414 (2016). https://doi.org/10.1007/s11090-015-9684-z

Download citation

Keywords

  • Cold atmospheric pressure plasma
  • Wheat seed
  • Germination
  • Filamentous fungi
  • Inactivation